cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A384968 Triangle read by rows: T(n,k) is the number of proper vertex colorings of the n-complete bipartite graph using exactly k interchangeable colors, 2 <= k <= 2*n.

Original entry on oeis.org

1, 1, 2, 1, 1, 6, 11, 6, 1, 1, 14, 61, 86, 50, 12, 1, 1, 30, 275, 770, 927, 530, 150, 20, 1, 1, 62, 1141, 5710, 12160, 12632, 6987, 2130, 355, 30, 1, 1, 126, 4571, 38626, 134981, 228382, 209428, 110768, 34902, 6580, 721, 42, 1, 1, 254, 18061, 248766, 1367310, 3553564, 4989621, 4093126, 2061782, 655788, 132958, 16996, 1316, 56, 1
Offset: 1

Views

Author

Andrew Howroyd, Jun 18 2025

Keywords

Comments

Permuting the colors does not change the coloring. T(n,k) is the number of ways to partition the vertices into k independent sets.

Examples

			Triangle begins (n >= 1, k >= 2):
  1;
  1,  2,    1;
  1,  6,   11,    6,     1;
  1, 14,   61,   86,    50,    12,    1;
  1, 30,  275,  770,   927,   530,  150,   20,   1;
  1, 62, 1141, 5710, 12160, 12632, 6987, 2130, 355, 30, 1;
  ...
		

Crossrefs

Row sums are A001247.
Columns k=2..5 are A000012, A000918, A384980, A384981.

Programs

  • PARI
    T(n,k) = sum(j=1, k-1, stirling(n,j,2)*stirling(n,k-j,2))
    for(n=1, 7, print(vector(2*n-1,k,T(n,k+1))))

Formula

T(n,k) = Sum_{j=1..k-1} Stirling2(n,j)*Stirling2(n,k-j).
T(n,k) = A274310(2*n-1, k-1).

A152525 a(n) is the number of unordered pairs of disjoint set partitions of an n-element set.

Original entry on oeis.org

0, 0, 1, 7, 65, 811, 12762, 244588, 5574956, 148332645, 4538695461, 157768581675, 6167103354744, 268758895112072, 12961171404183498, 687270616305277589, 39843719438374998543, 2512873126513271758171, 171643113190082528007702, 12647168303374365311984284
Offset: 0

Views

Author

David Pasino, Dec 06 2008, Dec 08 2008

Keywords

Examples

			From _Gus Wiseman_, Dec 09 2018: (Start)
The a(3) = 7 unordered pairs:
  {{1},{2},{3}}| {{1,2,3}}
   {{1},{2,3}} |{{1,2},{3}}
   {{1},{2,3}} |{{1,3},{2}}
   {{1,2},{3}} |{{1,3},{2}}
   {{1},{2,3}} | {{1,2,3}}
   {{1,2},{3}} | {{1,2,3}}
   {{1,3},{2}} | {{1,2,3}}
(End)
		

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(n,k)*binomial(combinat[bell](k),2)*
            add(Stirling2(n-k,j)*(-1)^j, j=0..n-k), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, May 27 2018
  • Mathematica
    Array[Sum[Binomial[#, k] Sum[(-1)^j*StirlingS2[# - k, j], {j, 0, # - k}] Binomial[BellB@ k, 2], {k, 0, #}] &, 20, 0] (* Michael De Vlieger, May 27 2018 *)
  • PARI
    a000110(n) = polcoeff( sum( k=0, n, prod( i=1, k, x / (1 - i*x)), x^n * O(x)), n);
    a(n) = sum(k=0, n, binomial(n,k) * sum(j=0, n-k, (-1)^j*stirling(n-k,j, 2) * binomial(a000110(k),2))); \\ Michel Marcus, May 27 2018

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * (Sum_{j=0..n-k} (-1)^j*A048993(n-k,j)) * binomial(A000110(k),2).
That is, summed on k from 0 to n, the number of k-element subsets of an n-element set, times the alternating sum of row n-k of Stirling2 numbers starting with +S(n-k, 0), times the number of pairs of partitions of k elements.
Obtained by inverting (binomial(A000110(n), 2)) = (Sum_{k=0..n} binomial(n,k)*A000110(n-k)*a(k)), which in turn is gotten by considering that a pair of conjoint partitions is gotten by choosing a partition of a subset and then choosing a pair of disjoint partitions of the complement.

A318398 Number of triples of set partitions of {1,2,...,n} whose meet is {{1},{2},...,{n}}.

Original entry on oeis.org

1, 7, 103, 2707, 110857, 6517129, 521167549, 54510591469, 7235648605909, 1190181847444189, 237953165658759679, 56905537750421669449, 16059682765076576965879, 5287171379685771887014489, 2010360123437921314268936809, 875173620070717892287441139989
Offset: 1

Views

Author

Gus Wiseman, Aug 25 2018

Keywords

Examples

			The a(2) = 7 triples:
  {{1},{2}} {{1},{2}} {{1},{2}}
  {{1},{2}} {{1},{2}}  {{1,2}}
  {{1},{2}}  {{1,2}}  {{1},{2}}
  {{1},{2}}  {{1,2}}   {{1,2}}
   {{1,2}}  {{1},{2}} {{1},{2}}
   {{1,2}}  {{1},{2}}  {{1,2}}
   {{1,2}}   {{1,2}}  {{1},{2}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[StirlingS1[n,k]*BellB[k]^3,{k,0,n}],{n,10}]

Formula

a(n) = Sum_{k = 0..n} s(n,k)*B(k)^3 where s = A048994 and B = A000110.

A318815 Number of triples of set partitions of {1,2,...,n} whose join is {{1,2,...,n}}.

Original entry on oeis.org

1, 7, 103, 2773, 117697, 7167619, 590978941, 63385879261, 8584707943381, 1434654097736101, 290409845948305321, 70125579500764771585, 19940633217840575968969, 6603748351832744611210549, 2522614472277243822293033719, 1102166886808604068546379343289
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Examples

			The a(2) = 7 triples:
  {{1},{2}} {{1},{2}}  {{1,2}}
  {{1},{2}}  {{1,2}}  {{1},{2}}
  {{1},{2}}  {{1,2}}   {{1,2}}
   {{1,2}}  {{1},{2}} {{1},{2}}
   {{1,2}}  {{1},{2}}  {{1,2}}
   {{1,2}}   {{1,2}}  {{1},{2}}
   {{1,2}}   {{1,2}}   {{1,2}}
		

Crossrefs

Programs

  • Mathematica
    nn=10;Table[n!*SeriesCoefficient[Log[1+Sum[BellB[n]^3*x^n/n!,{n,nn}]],{x,0,n}],{n,nn}]

Formula

Logarithmic transform of A000110(n)^3.
a(n) = Bell(n)^3 - (1/n) * Sum_{k=1..n-1} binomial(n,k) * Bell(n-k)^3 * k * a(k). - Ilya Gutkovskiy, Jan 17 2020

A069471 Stirling transform of squares of Bell numbers: a(0)=1, a(n) = Sum_{k=1..n} Stirling2(n,k)*(bell(k))^2.

Original entry on oeis.org

1, 1, 5, 38, 404, 5640, 98769, 2099606, 52883390, 1549218221, 52014755913, 1977659061064, 84305075757125, 3995485979209678, 209005906088572893, 11992147240091361387, 750583356339067110013, 50998365413706734478011
Offset: 0

Views

Author

Karol A. Penson, Mar 25 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[StirlingS2[n, k]*BellB[k]^2, {k, 1, n}], {n, 1, 50}]] (* G. C. Greubel, May 23 2018 *)

A095799 Bell triangle A011971 squared.

Original entry on oeis.org

1, 3, 4, 15, 21, 25, 107, 149, 200, 225, 1054, 1420, 1909, 2479, 2704, 13684, 17814, 23313, 30439, 38505, 41209, 224071, 283592, 360853, 461015, 587641, 727920, 769129, 4471699, 5535812, 6881856, 8590990, 10758160, 13443289, 16370471, 17139600
Offset: 1

Views

Author

Gary W. Adamson, Jun 06 2004

Keywords

Examples

			T(3,2) = 21, because M = [1; 1 2; 2 3 5; ...], M^2 = [1; 3 4; 15 21 25; ...] and M^2[3,2] = 21.
Triangle begins:
:     1;
:     3,     4;
:    15,    21,    25;
:   107,   149,   200,   225;
:  1054,  1420,  1909,  2479,  2704;
: 13684, 17814, 23313, 30439, 38505, 41209;
		

Crossrefs

Cf. A011971. Diagonal gives A001247 for n>0.

Programs

  • Maple
    with(combinat): A:= proc(n, k) option remember; `if`(k<=n, add(binomial(k, i) *bell(n-k+i), i=0..k), 0) end: M:= proc(n) option remember; Matrix(n, (i, j)-> A(i-1, j-1)) end: T:= (n, k)-> (M(n)^2)[n, k]: seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Oct 12 2009
  • Mathematica
    max = 10; M = Table[If[k > n, 0, Sum[Binomial[k, i] BellB[n-k+i], {i, 0, k} ]], {n, 0, max-1}, {k, 0, max-1}];
    T = M.M;
    Table[T[[n]][[1 ;; n]], {n, 1, max}] // Flatten (* Jean-François Alcover, May 24 2016 *)

Formula

Let M = the Bell triangle (A011971) as an infinite lower triangle matrix. Then T(n,k) = M^2[n,k].

Extensions

Edited, corrected and extended by Alois P. Heinz, Oct 12 2009

A217143 Sum of squares of Bell numbers (A000110).

Original entry on oeis.org

1, 2, 6, 31, 256, 2960, 44169, 813298, 17952898, 465148507, 13915349132, 474372594032, 18228772272441, 782443669319410, 37224994809379094, 1949799331997896119, 111783178753323665728, 6978369826387194664144, 472207139326449254997425
Offset: 0

Views

Author

Emanuele Munarini, Sep 27 2012

Keywords

Crossrefs

Partial sums of A001247.

Programs

  • Magma
    [&+[Bell(i)^2: i in [0..n]]: n in [0..20]]; // Bruno Berselli, Sep 27 2012
    
  • Mathematica
    Accumulate[BellB[Range[0, 20]]^2] (* Bruno Berselli, Sep 27 2012 *)
  • Maxima
    makelist(sum(belln(k)^2,k,0,n),n,0,30);
    
  • Python
    from itertools import accumulate, islice
    def A217143_gen(): # generator of terms
        yield 1
        blist, b, c = (1,), 1, 1
        while True:
            blist = list(accumulate(blist, initial=(b:=blist[-1])))
            yield (c := c+b**2)
    A217143_list = list(islice(A217143_gen(),20)) # Chai Wah Wu, Jun 22 2022

Formula

a(n) = Sum_{k=0..n} Bell(k)^2.

A318395 Number of nonnegative integer matrices with values summing to n, up to transposition and permutation of rows and columns.

Original entry on oeis.org

1, 1, 3, 7, 21, 54, 167, 491, 1586, 5132, 17442, 60399, 216172, 790436, 2965333, 11365813, 44536775, 178107679, 726716229, 3022464373, 12807206008, 55253891494, 242585471236, 1083255591604, 4917631017573, 22685090928596, 106291554085987, 505653658171936, 2441383079595849
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2018

Keywords

Comments

Also the number of non-isomorphic pairs of set partitions of {1,...,n}.

Examples

			Inequivalent representatives of the a(3) = 7 nonnegative integer matrices:
  [3]   [1 2]   [1 1 1]   [1 0]   [0 1]   [1 0 0]   [1 0 0]
                          [0 2]   [1 1]   [0 1 1]   [0 1 0]
                                                    [0 0 1]
Non-isomorphic representatives of the a(3) = 7 pairs of set partitions:
    {{1,2,3}}     {{1,2,3}}
    {{1,2,3}}    {{1},{2,3}}
    {{1,2,3}}   {{1},{2},{3}}
   {{1},{2,3}}   {{1},{2,3}}
   {{1},{2,3}}   {{2},{1,3}}
   {{1},{2,3}}  {{1},{2},{3}}
  {{1},{2},{3}} {{1},{2},{3}}
		

Crossrefs

Formula

a(n) = (A007716(n) + A316983(n))/2. - Andrew Howroyd, Sep 03 2018

Extensions

a(6)-a(25) from Andrew Howroyd, Sep 03 2018
Terms a(26) and beyond from Andrew Howroyd, Mar 29 2020

A337053 a(n) = exp(2) * Sum_{i>=0} Sum_{j>=0} (-1)^(i+j) * (i*j)^n / (i! * j!).

Original entry on oeis.org

1, 1, 0, 1, 1, 4, 81, 81, 2500, 71289, 170569, 4752400, 314388361, 2553584089, 12138750976, 3868290439209, 98777141491561, 74627448683524, 77548359598953721, 6456459980629467081, 96370747288471888164, 738333256838429983201, 526354651474052521626801
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 12 2020

Keywords

Comments

Squares of complementary Bell numbers.

Crossrefs

Programs

  • Mathematica
    Table[Exp[2] Sum[Sum[(-1)^(i + j) (i j)^n/(i! j!), {j, 0, Infinity}], {i, 0, Infinity}], {n, 0, 22}]
    Table[BellB[n, -1]^2, {n, 0, 22}]

Formula

a(n) = A000587(n)^2.

A354458 Number of commuting pairs of equivalence relations on [n].

Original entry on oeis.org

1, 1, 4, 19, 117, 864, 7459, 73749, 818960, 10078023
Offset: 0

Views

Author

Geoffrey Critzer, May 30 2022

Keywords

Comments

More precisely, a(n) is the number of ordered pairs (S,T) of equivalence relations on [n] such that S*T=T*S where the operation * is composition of relations. The composition of equivalence relations is not generally an equivalence relation. S*T=T*S if and only if S*T is the smallest equivalence relation that contains both S and T.

Examples

			Let S = 1/24/3 and T = 13/2/4 be equivalence relations on [4]. Then S*T = T*S = 13/24 so (S,T) is an example of a commuting pair of equivalence relations (as well as (T,S) ).
		

Crossrefs

Programs

  • Mathematica
    Needs["Combinatorica`"];f[partition_] := Normal[SparseArray[ Level[Map[Tuples[#, 2] &, partition], {2}] -> 1]]; Table[er = Map[f,SetPartitions[n]]; Length[Level[
       Table[Select[er, Clip[er[[i]].#] == Clip[#.er[[i]]] &], {i, 1,Length[er]}], {2}]], {n, 0, 8}]

Extensions

a(9) from Vaclav Kotesovec, May 31 2022
Previous Showing 11-20 of 20 results.