cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 372 results. Next

A300193 Pseudo-safe-primes: numbers n = 2m+1 with 2^m congruent to n+1 or 3n-1 modulo m*n, but m composite.

Original entry on oeis.org

683, 1123, 1291, 4931, 16963, 25603, 70667, 110491, 121403, 145771, 166667, 301703, 424843, 529547, 579883, 696323, 715523, 854467, 904103, 1112339, 1175723, 1234187, 1306667, 1444523, 2146043, 2651687, 2796203, 2882183, 3069083, 3216931, 4284283, 4325443
Offset: 1

Views

Author

Francois R. Grieu, Mar 05 2018

Keywords

Comments

The definition's congruence is verified if n is a safe prime A005385 with m the corresponding Sophie Germain prime A005384; and for a few other n, which form the sequence.
If that congruence is verified and m is prime, then n is prime (follows from a result by Fedor Petrov).
That congruence is equivalent to the combination: 2^m == +-1 (mod n) and 2^m == 2 (mod m).
Composite n are Euler pseudoprimes A006970, and strong pseudoprimes A001262 if m is odd. The smallest is a(6534) = (2^47+1)/3 = 46912496118443 = 283*165768537521 (cf. A303448). See Peter Košinár link.
Even m belong to A006935. The first is a(986) = 252435584573, m = 126217792286 (cf. A303008).

Examples

			n = 683 = 2*341+1 is in the sequence because 2^341 == 2048 == 3*n-1 (mod 341*683) and m = 341 = 11*13 is composite.
n = 301703 = 2*150851+1 is in the sequence because 2^150851 == 301704 == n+1 (mod 150851*301703) and m = 150851 = 251*601 is composite.
n = 5 = 2*2+1 is not in the sequence because m = 2 is prime.
		

Crossrefs

Programs

  • Mathematica
    For[m=1,(n=2m+1)<4444444,++m,If[MemberQ[{n+1,3n-1},PowerMod[2,m,m*n]] &&!PrimeQ[m], Print[n]]] (* Francois R. Grieu, Mar 19 2018 *)
  • PARI
    isok(n) = {if ((n % 2) && (m=(n-1)/2) && !isprime(m), v = lift(Mod(2, m*n)^m); if ((v == n+1) || (v == 3*n-1), return (1));); return (0);} \\ Michel Marcus, Mar 06 2018

A062852 Largest n-digit strong pseudoprimes (in base 2).

Original entry on oeis.org

8321, 90751, 983401, 9995671, 99789673, 999828727, 9998721001, 99973476433, 999855751441, 9998974546471, 99999760517281, 999985147456681, 9999952887414577, 99999984319096601, 999999916795882627, 9999999995077192591
Offset: 4

Views

Author

Shyam Sunder Gupta, Feb 13 2002

Keywords

Examples

			a(4)=8321 since 8321 is the largest 4-digit strong pseudoprime to base 2.
		

Crossrefs

Extensions

Edited by Charles R Greathouse IV, Nov 01 2009
a(16)-a(19) from Charles R Greathouse IV, Mar 14 2011

A083739 Pseudoprimes to bases 2, 3, 5 and 7.

Original entry on oeis.org

29341, 46657, 75361, 115921, 162401, 252601, 294409, 314821, 334153, 340561, 399001, 410041, 488881, 512461, 530881, 552721, 658801, 721801, 852841, 1024651, 1152271, 1193221, 1461241, 1569457, 1615681, 1857241, 1909001, 2100901
Offset: 1

Views

Author

Serhat Sevki Dincer (sevki(AT)ug.bilkent.edu.tr), May 05 2003

Keywords

Examples

			a(1)=29341 since it is the first number such that 2^(k-1) = 1 (mod k), 3^(k-1) = 1 (mod k), 5^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).
		

Crossrefs

Proper subset of A083737.

Programs

  • Maple
    a001567 := [] : f := fopen("b001567.txt",READ) : bfil := readline(f) : while StringTools[WordCount](bfil) > 0 do if StringTools[FirstFromLeft]("#",bfil ) <> 0 then ; else bfil := sscanf(bfil,"%d %d") ; a001567 := [op(a001567), op(2,bfil) ] ; fi ; bfil := readline(f) ; od: fclose(f) : isPsp := proc(n,b) if n>3 and not isprime(n) and b^(n-1) mod n = 1 then true; else false; fi; end: isA001567 := proc(n) isPsp(n,2) ; end: isA005935 := proc(n) isPsp(n,3) ; end: isA005936 := proc(n) isPsp(n,5) ; end: isA005938 := proc(n) isPsp(n,7) ; end: isA083739 := proc(n) if isA001567(n) and isA005935(n) and isA005936(n) and isA005938(n) then true ; else false ; fi ; end: n := 1: for psp2 from 1 do i := op(psp2,a001567) ; if isA083739(i) then printf("%d %d ",n,i) ; n :=n+1 ; fi ; od: # R. J. Mathar, Feb 07 2008
  • Mathematica
    Select[ Range[2113920], !PrimeQ[ # ] && PowerMod[2, # - 1, # ] == 1 && PowerMod[3, 1 - 1, # ] == 1 && PowerMod[5, # - 1, # ] == 1 && PowerMod[7, 1 - 1, # ] == 1 & ]
  • PARI
    is(n)=!isprime(n)&&Mod(2,n)^(n-1)==1&&Mod(3,n)^(n-1)==1&&Mod(5,n)^(n-1)==1&&Mod(7,n)^(n-1)==1 \\ Charles R Greathouse IV, Apr 12 2012

Formula

a(n) = n-th positive integer k(>1) such that 2^(k-1) = 1 (mod k), 3^(k-1) = 1 (mod k), 5^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).
A005938 INTERSECT A083737. - R. J. Mathar, Feb 07 2008

Extensions

Edited by Robert G. Wilson v, May 06 2003

A085014 For p = prime(n), a(n) is the number of primes q such that pq is a base-2 pseudoprime; that is, 2^(pq-1) = 1 mod pq.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 2, 1, 3, 2, 1, 3, 2, 2, 4, 1, 2, 3, 5, 4, 3, 6, 4, 4, 6, 4, 5, 4, 6, 5, 4, 2, 5, 8, 7, 5, 6, 3, 3, 3, 4, 5, 4, 4, 5, 9, 8, 7, 8, 5, 8, 7, 8, 4, 6, 6, 7, 7, 9, 6, 11, 7, 8, 2, 7, 12, 8, 6, 8, 4, 5, 5, 6, 5, 11, 10, 9, 11, 5, 8, 9, 12, 9, 4, 7, 13, 8, 5
Offset: 2

Views

Author

T. D. Noe, Jun 28 2003

Keywords

Comments

Using a construction in Erdős's paper, it can be shown that a(prime(n)) > 0, except for the primes 3, 5, 7 and 13. Using a theorem of Lehmer, it can be shown that the possible values of q are among the prime factors of 2^(p-1)-1. The sequence A085012 gives the smallest prime q such that q*prime(n) is a pseudoprime.
Sequence A086019 gives the largest prime q such that q*prime(n) is a pseudoprime.

Examples

			a(11) = 3 because prime(11) = 31 and 2^30-1 has 3 prime factors (11, 151, 331) that yield pseudoprimes when multiplied by 31.
		

References

  • Paulo Ribenboim, The New Book of Prime Number Records, Springer, 1996, p. 105-112.

Crossrefs

Cf. A001567 (base-2 pseudoprimes), A085012, A086019, A180471.

Programs

  • Mathematica
    Table[p=Prime[n]; q=Transpose[FactorInteger[2^(p-1)-1]][[1]]; cnt=0; Do[If[PowerMod[2, p*q[[i]]-1, p*q[[i]]]==1, cnt++ ], {i, Length[q]}]; cnt, {n, 2, 50}]

Formula

a(n) < 0.7 * p, where p is the n-th prime. - Charles R Greathouse IV, Apr 12 2012

A215672 Fermat pseudoprimes to base 2 with three prime factors.

Original entry on oeis.org

561, 645, 1105, 1729, 1905, 2465, 2821, 4371, 6601, 8481, 8911, 10585, 12801, 13741, 13981, 15841, 16705, 25761, 29341, 30121, 30889, 33153, 34945, 41665, 46657, 52633, 57421, 68101, 74665, 83665, 87249, 88561, 91001, 93961, 113201, 115921, 121465, 137149
Offset: 1

Views

Author

Marius Coman, Aug 20 2012

Keywords

Comments

Fermat pseudoprimes to base 2 are also called Poulet numbers.
Most of the terms shown can be written in one of the following two ways:
(1) p*(p*(n + 1) - n)*(p*(m + 1) - m);
(2) p*(p*n - (n + 1))*(p*m - (m + 1)),
where p is the smallest of the three prime factors and n, m natural numbers.
Exempli gratia for Poulet numbers from the first category:
10585 = 5*29*73 = 5*(5*7 - 6)*(5*18 - 17);
13741 = 7*13*151 = 7*(7*2 - 1)*(7*25 - 24);
13981 = 11*31*41 = 11*(11*3 - 2)*(11*4 - 3);
29341 = 13*37*61 = 13*(13*3 - 2)*(13*5 - 4);
137149 = 23*67*89 = 23*(23*3 - 2)*(23*4 - 3).
Exempli gratia for Poulet numbers from the second category:
6601 = 7*23*41 = 7*(7*4 - 5)*(7*7 - 8).
Note: from the numbers from the sequence above, just the numbers 30889, 88561 and 91001 can't be written in one of the two ways.
What these three numbers have in common: they all have a prime divisor q of the form 30*k + 23 (i.e. 23, 53, 83) and can be written as q*((r + 1)*q - r), where r is a natural number.
Conjecture: Any Poulet number P with three or more prime divisors has at least one prime divisor q for that can be written as P = q*((r + 1)*q - r), where r is a natural number.
Note: it can be proved that a Carmichael number can be written this way for any of its prime divisors - see the sequence A213812.
Note: there are also many Poulet numbers with two prime divisors that can be written this way, but here are few exceptions: 7957, 23377, 42799, 49981, 60787.
The conjecture fails for a(80) = 617093 = 43 * 113 * 127. - Charles R Greathouse IV, Dec 07 2014
First differs from A074380 at n=56. - Amiram Eldar, Jun 28 2019

Crossrefs

The even terms form A296117.

Programs

  • Mathematica
    Select[Range[10^5], PrimeNu[#] == 3 && PowerMod[2, (# - 1), #] == 1 &] (* Amiram Eldar, Jun 28 2019 *)
  • PARI
    is(n)=Mod(2,n)^n==2 && bigomega(n)==3 \\ Charles R Greathouse IV, Dec 07 2014

A242742 Let k be the n-th composite number: then a(n) is the smallest base b such that b^(k-1) == 1 (mod k).

Original entry on oeis.org

5, 7, 9, 8, 11, 13, 15, 4, 17, 19, 21, 8, 23, 25, 7, 27, 26, 9, 31, 33, 10, 35, 6, 37, 39, 14, 41, 43, 45, 8, 47, 49, 18, 51, 16, 9, 55, 21, 57, 20, 59, 61, 63, 8, 65, 8, 25, 69, 22, 11, 73, 75, 26, 45, 34, 79, 81, 80, 83, 85, 4, 87, 28, 89, 91, 3, 93, 32, 95
Offset: 1

Views

Author

Felix Fröhlich, Aug 16 2014

Keywords

Crossrefs

Programs

  • Mathematica
    sbb[n_]:=Module[{b=2},While[PowerMod[b,n-1,n]!=1,b++];b]; sbb/@Select[ Range[ 100],CompositeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 29 2018 *)
  • PARI
    forcomposite(k=2, 1e2, for(b=2, 1e9, if(Mod(b, k)^(k-1)==1, print1(b, ", "); next({2}))); print1(">1e9, "))

Formula

a(n) = A105222(A002808(n)). - Michel Marcus, Aug 21 2014

A270697 Composite numbers k == 3 (mod 4) such that (1 + i)^k == 1 - i (mod k), where i = sqrt(-1).

Original entry on oeis.org

2047, 42799, 90751, 256999, 271951, 476971, 514447, 741751, 877099, 916327, 1302451, 1325843, 1397419, 1441091, 1507963, 1530787, 1907851, 2004403, 2205967, 2304167, 2748023, 2811271, 2953711, 2976487, 3090091, 3116107, 4469471, 4863127, 5016191
Offset: 1

Views

Author

Keywords

Comments

Composite k == 3 (mod 4) such that 2*(-4)^((k-3)/4) == -1 (mod k). - Robert Israel, Mar 21 2016
2*(-4)^((p-3)/4) == -1 (mod p) is satisfied by all primes p == 3 (mod 4), see A318908. - Jianing Song, Sep 05 2018
Numbers in A047713 that are congruent to 3 mod 4. Most terms are congruent to 7 mod 8. For terms congruent to 3 mod 8, see A244628. - Jianing Song, Sep 05 2018
Question: Is this a subsequence of A001262? I have verified that it contains all terms up to 2^64. - Joseph M. Shunia, Jul 02 2019

Crossrefs

Subsequence of A001567 and A047713.
A244628 is a proper subsequence.

Programs

  • Maple
    select(t -> not isprime(t) and 1 + 2*(-4) &^ ((t-3)/4) mod t = 0, [seq(i, i=7..10^7, 4)]); # Robert Israel, Mar 21 2016
  • Mathematica
    Select[3 + 4*Range[10000000], PrimeQ[#] == False && PowerMod[1 + I, #, #] == Mod[1 - I, #] &]
  • PARI
    forstep(n=3, 10^7, 4, if(Mod(2, n)^((n-1)/2)==kronecker(2, n) && !isprime(n), print1(n, ", ")))

A298758 Numbers k such that both k and 2k-1 are Poulet numbers (Fermat pseudoprimes to base 2).

Original entry on oeis.org

15709, 65281, 20770621, 104484601, 112037185, 196049701, 425967301, 2593182901, 16923897871, 32548281361, 45812984491, 52035130951, 55897227751, 82907336737, 90003640021, 92010062101, 138016057141, 204082130071, 310026150211, 620006892121, 622333751509
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2018

Keywords

Comments

2*a(n) - 1 = A303531(n) belongs to A217465. - Max Alekseyev, Apr 24 2018
Numbers k such that both k and 2k+1 are Poulet numbers are listed in A303447.
If p is a prime such that 2*p-1 is also a prime (A005382) and k = (2^(2*p-1)+1)/3 and 2*k-1 are both composites, then k is a term of this sequence (Rotkiewicz, 2000). - Amiram Eldar, Nov 09 2023

Crossrefs

Subsequence of A001567.

Programs

  • Mathematica
    s = Import["b001567.txt", "Data"][[All, -1]]; n = Length[s];
    aQ[n_] := ! PrimeQ[n] && PowerMod[2, (n - 1), n] == 1;
    a = {}; Do[p = 2*s[[k]] - 1; If[aQ[p], AppendTo[a, s[[k]]]], {k, 1, n}]; a (* using the b-File from A001567 *)
  • PARI
    isP(n) = (Mod(2, n)^n==2) && !isprime(n) && (n>1);
    isok(n) = isP(n) && isP(2*n-1); \\ Michel Marcus, Mar 09 2018

A020139 Pseudoprimes to base 11.

Original entry on oeis.org

10, 15, 70, 133, 190, 259, 305, 481, 645, 703, 793, 1105, 1330, 1729, 2047, 2257, 2465, 2821, 4577, 4921, 5041, 5185, 6601, 7869, 8113, 8170, 8695, 8911, 9730, 10585, 12403, 13333, 14521, 14981, 15841, 16705, 17711, 18705, 23377, 24130, 24727, 26335, 26467
Offset: 1

Views

Author

Keywords

Comments

According to Karsten Meyer, May 16 2006, 10 should be excluded, following the strict definition in Crandall and Pomerance.
Composite numbers n such that 11^(n-1) == 1 (mod n).

References

  • R. Crandall and C. Pomerance, "Prime Numbers - A Computational Perspective", Second Edition, Springer Verlag 2005, ISBN 0-387-25282-7 Page 132 (Theorem 3.4.2. and Algorithm 3.4.3)
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 190, p. 57, Ellipses, Paris 2008.

Crossrefs

Cf. A001567 (pseudoprimes to base 2).

Programs

  • Mathematica
    base = 11; t = {}; n = 1; While[Length[t] < 100, n++; If[! PrimeQ[n] && PowerMod[base, n-1, n] == 1, AppendTo[t, n]]]; t (* T. D. Noe, Feb 21 2012 *)

A066488 Composite numbers k which divide A001045(k-1).

Original entry on oeis.org

341, 1105, 1387, 1729, 2047, 2465, 2701, 2821, 3277, 4033, 4369, 4681, 5461, 6601, 7957, 8321, 8911, 10261, 10585, 11305, 13741, 13747, 13981, 14491, 15709, 15841, 16705, 18721, 19951, 23377, 29341, 30121, 30889, 31417, 31609, 31621, 34945
Offset: 1

Views

Author

Robert G. Wilson v, Jan 03 2002

Keywords

Comments

Also composite numbers k such that (2^k - 2)/3 + 1 == 2^k - 1 == 1 (mod k).
An equivalent definition of this sequence: pseudoprimes to base 2 that are not divisible by 3. - Arkadiusz Wesolowski, Nov 15 2011
Conjecture: these are composites k such that 2^M(k-1) == -1 (mod M(k)^2 + M(k) + 1), where M(k) = 2^k - 1. - Amiram Eldar and Thomas Ordowski, Dec 19 2019
These are composites k such that 2^(m-1) == 1 (mod (m+1)^6 - 1), where m = 2^k - 1. - Thomas Ordowski, Sep 17 2023

Crossrefs

Programs

  • Magma
    [k:k in [4..40000]|not IsPrime(k) and ((2^(k-1) + (-1)^k) div 3) mod k eq 0]; // Marius A. Burtea, Dec 20 2019
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n - 1] + 2a[n - 2]; Select[ Range[50000], IntegerQ[a[ # - 1]/ # ] && !PrimeQ[ # ] && # != 1 & ]
    fQ[n_] := ! PrimeQ@ n && Mod[((2^n - 2)/3 + 1), n] == Mod[2^n - 1, n] == 1; Select[ Range@ 35000, fQ]
  • PARI
    is(n)=n%3 && Mod(2,n)^(n-1)==1 && !isprime(n) && n>1 \\ Charles R Greathouse IV, Sep 18 2013
    
Previous Showing 91-100 of 372 results. Next