cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 76 results. Next

A160536 a(n) = Fibonacci(n) + n^2.

Original entry on oeis.org

0, 2, 5, 11, 19, 30, 44, 62, 85, 115, 155, 210, 288, 402, 573, 835, 1243, 1886, 2908, 4542, 7165, 11387, 18195, 29186, 46944, 75650, 122069, 197147, 318595, 515070, 832940, 1347230, 2179333, 3525667, 5704043, 9228690, 14931648, 24159186, 39089613, 63247507
Offset: 0

Views

Author

Leonardo Sznajder, May 18 2009

Keywords

Examples

			a(6) = Fibonacci(6) + 6^2 = 8 + 36 = 44.
		

Crossrefs

Programs

Formula

a(n) = a(n-4) - a(n-3) - 2*a(n-2) + 3*a(n-1) - 2 for n > 3; a(0)=0, a(1)=2, a(2)=5, a(3)=11. - Klaus Brockhaus, May 22 2009
G.f.: x*(2-3*x+x^2-2*x^3) / ((1-x)^3*(1-x-x^2)). - Klaus Brockhaus, May 22 2009

Extensions

Edited and extended by Klaus Brockhaus, May 22 2009

A187890 a(1) = 0, a(2) = 4, a(n) = a(n-1) + a(n-2) - 1.

Original entry on oeis.org

0, 4, 3, 6, 8, 13, 20, 32, 51, 82, 132, 213, 344, 556, 899, 1454, 2352, 3805, 6156, 9960, 16115, 26074, 42188, 68261, 110448, 178708, 289155, 467862, 757016, 1224877, 1981892, 3206768, 5188659, 8395426, 13584084, 21979509, 35563592, 57543100
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{a = 0, b = 4}, Table[c = a+b-1; a=b; b=c, {n, 100}]]
    LinearRecurrence[{2, 0, -1}, {0, 4, 3}, 40] (* Harvey P. Dale, Sep 25 2013 *)
    CoefficientList[Series[(-x (-4 + 5 x))/((x - 1) (x^2 + x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 26 2013 *)

Formula

G.f.: -x^2*(-4+5*x) / ( (x-1)*(x^2+x-1) ). - R. J. Mathar, Mar 15 2011
a(n) = 1+A001060(n-2), n>2. - R. J. Mathar, Mar 15 2011
a(n) - a(n-1) = A013655(n-4). - R. J. Mathar, Jun 19 2021
If we start the sequence 1, 3, 6, ... and set the offset to 0, then the sequence has the generating function (1 + x - 3*x^3)/(x^3 - 2*x + 1) and gives the row sums of A374438. - Peter Luschny, Jul 22 2024

Extensions

Definition adapted to offset by Georg Fischer, Jun 19 2021

A232896 a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4), where a(1) = 1, a(2) = 3, a(3) = 5, a(4) = 8.

Original entry on oeis.org

1, 3, 5, 8, 12, 18, 27, 41, 63, 98, 154, 244, 389, 623, 1001, 1612, 2600, 4198, 6783, 10965, 17731, 28678, 46390, 75048, 121417, 196443, 317837, 514256, 832068, 1346298, 2178339, 3524609, 5702919, 9227498, 14930386, 24157852, 39088205, 63246023, 102334193
Offset: 1

Views

Author

Clark Kimberling, Dec 02 2013

Keywords

Comments

Conjecture: a(n) is the position of 2*n-1, for n >= 1, in the sequence S = A232895 of positive integers generated by these rules: 1 and 2 are in S; if x is in S then x + 2 and 2*x are in S, where duplicates are deleted as they occur.

Examples

			a(5) = 3*a(4) - 2*a(3) - a(4) + a(5) = 3*8 - 2*5 - 3 + 1 = 12.
		

Crossrefs

Cf. A232895.

Programs

  • Magma
    I:=[1,3,5,8]; [n le 4 select I[n] else 3*Self(n-1)-2*Self(n-2)-Self(n-3)+Self(n-4): n in [1..40]]; // Vincenzo Librandi, Mar 18 2015
    
  • Mathematica
    a[1] = 1; a[2] = 3; a[3] = 5; a[4] = 8; a[n_] := a[n] = 3*a[n - 1] - 2*a[n - 2] - a[n - 3] + a[n - 4]; t = Table[a[n], {n, 1, 100}]
    CoefficientList[Series[(1 - 2 x^2) / ((1 - x)^2 (1 - x - x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 18 2015 *)
    LinearRecurrence[{3, -2, -1, 1}, {1, 3, 5, 8}, 39] (* Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    Vec(x*(1-2*x^2)/((1-x)^2*(1-x-x^2)) + O(x^50)) \\ Michel Marcus, Mar 18 2015

Formula

a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4), where a(1) = 1, a(2) = 3, a(3) = 5, a(4) = 8.
a(n) = n-1 + A000045(n+1). - Tom Edgar, Mar 09 2015
G.f.: x*(1-2*x^2)/((1-x)^2*(1-x-x^2)). - Vincenzo Librandi, Mar 18 2015
a(n) = -1 + (2^(-1-n)*(-(1-sqrt(5))^(1+n) + (1+sqrt(5))^(1+n))) / sqrt(5) + n. - Colin Barker, Mar 11 2017
a(n) = Sum_{k=1..n} A001611(k-1). - Ehren Metcalfe, Apr 15 2019

A256968 Let b(n) = Product_{i=1..n} p_i/(p_i - 1), p_i = i-th prime; a(n) = minimum k such that b(k) >= n.

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 9, 14, 22, 35, 55, 89, 142, 230, 373, 609, 996, 1637, 2698, 4461, 7398, 12301, 20503, 34253, 57348, 96198, 161659, 272124, 458789, 774616, 1309627, 2216968, 3757384, 6375166, 10828012, 18409028, 31326514, 53354259, 90945529, 155142139
Offset: 0

Views

Author

N. J. A. Sloane, Apr 17 2015

Keywords

Comments

A001611 is similar but different.
Equal to A005579 except for n = 2 and n = 3. The following argument shows that they are equal for n > 3. First note that b(k+1) > b(k). Next, Product_{i=1..k} p_i is 2 times an odd number, i.e., it is not divisible by 4. Similarly since p_i - 1 is even for i > 1, Product_{i=1..k} (p_i - 1) is divisible by 2^(k-1), i.e., it is divisible by 4 for k >= 3. Thus b(k) is not an integer for k >= 3. Since b(3) = 15/4 > 3, this means that a(n) = A005579(n) for n > 3 - Chai Wah Wu, Apr 17 2015

Examples

			The sequence b(n) for n >= 0 begins 1, 2, 3, 15/4, 35/8, 77/16, 1001/192, 17017/3072, 323323/55296, 676039/110592, 2800733/442368, 86822723/13271040, 3212440751/477757440, 131710070791/19110297600, 5663533044013/802632499200, ... = A060753/A038110. So a(3) = 2.
		

Crossrefs

Programs

  • Python
    from sympy import prime
    A256968_list, count, bn, bd = [0,0], 2, 1, 1
    for k in range(1,10**4):
        p = prime(k)
        bn *= p
        bd *= p-1
        while bn >= count*bd:
            A256968_list.append(k)
    count += 1 # Chai Wah Wu, Apr 17 2015; corrected by Max Alekseyev, Jan 26 2025

Extensions

More terms from Chai Wah Wu, Apr 17 2015
a(32)-a(33) from Chai Wah Wu, Apr 19 2015
a(0)-a(1) corrected and a(34)-a(39) copied over from A005579 by Max Alekseyev, Jan 26 2025

A298917 T(n,k) = Number of n X k 0..1 arrays with every element equal to 0, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 2, 3, 1, 1, 5, 3, 3, 3, 5, 1, 1, 8, 5, 4, 4, 5, 8, 1, 1, 13, 8, 6, 7, 6, 8, 13, 1, 1, 21, 13, 9, 9, 9, 9, 13, 21, 1, 1, 34, 21, 14, 15, 14, 15, 14, 21, 34, 1, 1, 55, 34, 22, 26, 24, 24, 26, 22, 34, 55, 1, 1, 89, 55, 35, 46, 44, 40, 44, 46, 35, 55
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2018

Keywords

Comments

Table starts
.1..1..1..1..1..1...1...1...1....1....1.....1.....1......1......1.......1
.1..1..1..2..3..5...8..13..21...34...55....89...144....233....377.....610
.1..1..1..2..3..5...8..13..21...34...55....89...144....233....377.....610
.1..2..2..3..4..6...9..14..22...35...56....90...145....234....378.....611
.1..3..3..4..7..9..15..26..46...84..151...276...506....929...1708....3138
.1..5..5..6..9.14..24..44..81..156..306...602..1192...2370...4720....9415
.1..8..8..9.15.24..40..76.141..277..570..1171..2441...5157..10913...23193
.1.13.13.14.26.44..76.168.359..792.1895..4521.10886..26818..66131..163463
.1.21.21.22.46.81.141.359.873.2145.5971.16568.45898.131372.376833.1078872

Examples

			All solutions for n=5, k=4
..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0
..1..1..1..1. .0..0..1..1. .0..0..0..0. .0..0..0..0
..1..1..1..1. .0..0..1..1. .1..1..1..1. .0..0..0..0
..1..1..1..1. .0..0..1..1. .1..1..1..1. .0..0..0..0
		

Crossrefs

Columns 2 and 3 are A000045(n-1).
Column 4 is A001611(n-1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1).
k=2: a(n) = a(n-1) +a(n-2) for n>3.
k=3: a(n) = a(n-1) +a(n-2) for n>3.
k=4: a(n) = 2*a(n-1) -a(n-3).
k=5: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-5) -a(n-6) -a(n-7) -a(n-8) for n>9.
k=6: a(n) = 3*a(n-1) -2*a(n-2) +a(n-3) -2*a(n-4) -a(n-7) +2*a(n-8) for n>9.
k=7: [order 14] for n>15.

A212272 a(n) = Fibonacci(n) + n^3.

Original entry on oeis.org

0, 2, 9, 29, 67, 130, 224, 356, 533, 763, 1055, 1420, 1872, 2430, 3121, 3985, 5083, 6510, 8416, 11040, 14765, 20207, 28359, 40824, 60192, 90650, 138969, 216101, 339763, 538618, 859040, 1376060, 2211077, 3560515, 5742191, 9270340, 14977008, 24208470, 39143041
Offset: 0

Views

Author

Bruno Berselli, May 09 2012

Keywords

Crossrefs

Programs

  • Magma
    [Fibonacci(n)+n^3: n in [0..38]];
  • Mathematica
    Table[Fibonacci[n] + n^3, {n, 0, 38}]
  • PARI
    for(n=0, 38, print1(fibonacci(n)+n^3", "));
    

Formula

G.f.: x*(2-x+2*x^2-9*x^3)/((1-x-x^2)*(1-x)^4).

A298187 T(n,k)=Number of nXk 0..1 arrays with every element equal to 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 2, 0, 0, 3, 2, 2, 3, 0, 0, 5, 3, 3, 3, 5, 0, 0, 8, 5, 4, 4, 5, 8, 0, 0, 13, 8, 6, 5, 6, 8, 13, 0, 0, 21, 13, 9, 7, 7, 9, 13, 21, 0, 0, 34, 21, 14, 10, 10, 10, 14, 21, 34, 0, 0, 55, 34, 22, 15, 14, 14, 15, 22, 34, 55, 0, 0, 89, 55, 35, 23, 20, 19, 20, 23, 35, 55
Offset: 1

Views

Author

R. H. Hardin, Jan 14 2018

Keywords

Comments

Table starts
.0..0..0..0..0..0..0..0..0...0...0...0...0....0....0....0....0.....0.....0
.0..1..1..2..3..5..8.13.21..34..55..89.144..233..377..610..987..1597..2584
.0..1..1..2..3..5..8.13.21..34..55..89.144..233..377..610..987..1597..2584
.0..2..2..3..4..6..9.14.22..35..56..90.145..234..378..611..988..1598..2585
.0..3..3..4..5..7.10.15.23..36..57..91.146..235..379..612..989..1599..2586
.0..5..5..6..7.10.14.20.29..44..68.106.166..262..416..663.1059..1695..2718
.0..8..8..9.10.14.19.27.38..58..90.142.225..362..587..959.1572..2587..4270
.0.13.13.14.15.20.27.41.58..91.145.240.398..680.1157.2003.3476..6073.10620
.0.21.21.22.23.29.38.58.81.127.203.341.574.1019.1784.3212.5779.10480.18971

Examples

			Some solutions for n=7 k=4
..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..1..1. .0..0..0..0. .1..1..1..1. .0..0..0..0
..0..0..0..0. .0..0..1..1. .1..1..1..1. .1..1..1..1. .1..1..1..1
..0..0..0..0. .0..0..1..1. .1..1..1..1. .1..1..1..1. .1..1..1..1
..0..0..0..0. .0..0..1..1. .1..1..1..1. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..1..1. .1..1..1..1. .0..0..0..0. .0..0..0..0
		

Crossrefs

Column 2 is A000045(n-1).
Column 3 is A000045(n-1).
Column 4 is A001611(n-1).
Column 5 is A157725(n-1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +a(n-2)
k=3: a(n) = a(n-1) +a(n-2)
k=4: a(n) = 2*a(n-1) -a(n-3) for n>4
k=5: a(n) = 2*a(n-1) -a(n-3) for n>4
k=6: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +2*a(n-4) -2*a(n-5) +a(n-7) for n>8
k=7: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +2*a(n-4) -2*a(n-5) +a(n-6) -a(n-7) +a(n-8) -a(n-10) +a(n-11) for n>12

A020717 Pisot sequences L(6,9), E(6,9).

Original entry on oeis.org

6, 9, 14, 22, 35, 56, 90, 145, 234, 378, 611, 988, 1598, 2585, 4182, 6766, 10947, 17712, 28658, 46369, 75026, 121394, 196419, 317812, 514230, 832041, 1346270, 2178310, 3524579, 5702888, 9227466, 14930353, 24157818, 39088170, 63245987, 102334156, 165580142
Offset: 0

Views

Author

Keywords

References

  • Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016.

Crossrefs

Subsequence of A001611, A048577.
See A008776 for definitions of Pisot sequences.
Pairwise sums of A018910.

Programs

  • Mathematica
    Table[Fibonacci[n + 5] + 1, {n, 0, 36}] (* Michael De Vlieger, Jul 27 2016 *)
  • PARI
    pisotE(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
      a
    }
    pisotE(50, 6, 9) \\ Colin Barker, Jul 27 2016

Formula

a(n) = Fibonacci(n+5)+1 = A001611(n+5).
a(n) = 2*a(n-1) - a(n-3).
a(n) = A020706(n+1). - R. J. Mathar, Oct 25 2008

A061489 Numbers that are Fibonacci numbers plus or minus 1.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 9, 12, 14, 20, 22, 33, 35, 54, 56, 88, 90, 143, 145, 232, 234, 376, 378, 609, 611, 986, 988, 1596, 1598, 2583, 2585, 4180, 4182, 6764, 6766, 10945, 10947, 17710, 17712, 28656, 28658, 46367, 46369, 75024, 75026, 121392, 121394, 196417
Offset: 1

Views

Author

N. J. A. Sloane, Nov 08 2001

Keywords

Comments

Only the first four terms are Fibonacci numbers per se. - Alonso del Arte, Oct 05 2017

Crossrefs

Cf. A000071, A001611 (the union of those two sequences forms this sequence).

Programs

  • Mathematica
    Union[Table[Fibonacci[i] - 1, {i, 30}], Table[Fibonacci[j] + 1, {j, 0, 30}]]
    Union[Flatten[# + {1, -1} &/@ Fibonacci[Range[30]]]] (* Harvey P. Dale, Dec 26 2015 *)
  • PARI
    { t="b061489.txt"; for (n=1, 4, write(t, n, " ", n - 1) ); g=3; h=2; for (n=3, 250, f=g + h; h=g; g=f; write(t, 2*n - 1, " ", f - 1); write(t, 2*n, " ", f + 1) ) } \\ Harry J. Smith, Jul 23 2009

Formula

a(n) = -a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n+5), for n >= 10. - Amiram Eldar, Jun 24 2023

Extensions

More terms from Robert G. Wilson v, Nov 12 2001

A063726 a(n) = gcd(1 + Fibonacci(n+1), 1 + Fibonacci(n)).

Original entry on oeis.org

1, 2, 1, 1, 2, 3, 1, 2, 1, 7, 2, 5, 1, 18, 1, 13, 2, 47, 1, 34, 1, 123, 2, 89, 1, 322, 1, 233, 2, 843, 1, 610, 1, 2207, 2, 1597, 1, 5778, 1, 4181, 2, 15127, 1, 10946, 1, 39603, 2, 28657, 1, 103682, 1, 75025, 2, 271443, 1, 196418, 1, 710647, 2, 514229, 1, 1860498, 1
Offset: 0

Views

Author

Jason Earls, Aug 11 2001

Keywords

Crossrefs

Programs

  • GAP
    List([0..65],n->Gcd(1+Fibonacci(n+1),1+Fibonacci(n))); # Muniru A Asiru, Oct 09 2018
  • Magma
    [GCD(1 + Fibonacci(n+1), 1 + Fibonacci(n)): n in [0..50]]; // G. C. Greubel, Oct 08 2018
    
  • Maple
    with(combinat): seq(gcd(1+fibonacci(n+1),1+fibonacci(n)),n=0..65); # Muniru A Asiru, Oct 09 2018
  • Mathematica
    Table[GCD[Fibonacci[n],Fibonacci[n+1]+1],{n,5!}] (* Vladimir Joseph Stephan Orlovsky, Apr 03 2010 *)
  • PARI
    j=[]; for(n=0,75,j=concat(j,gcd(1+fibonacci(n+1),1+fibonacci(n) ))); j
    
  • PARI
    { g=0; f=1; for (n=0, 1000, write("b063726.txt", n, " ", gcd(1 + f, 1 + g)); h=g; g=f; f+=h ) } \\ Harry J. Smith, Aug 28 2009
    

Formula

Conjectures from Colin Barker, Jan 30 2018: (Start)
G.f.: (1 + 2*x + x^2 + x^3 - x^4 - 3*x^5 - 3*x^6 - 3*x^7 - 5*x^8 - x^9 + x^10 + 3*x^11 + 2*x^12 + x^13) / ((1 - x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)*(1 + x^2 - x^4)*(1 - x^2 - x^4)).
a(n) = 3*a(n-4) + a(n-6) - a(n-8) - 3*a(n-10) + a(n-14) for n>13.
(End)
Previous Showing 51-60 of 76 results. Next