cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 326 results. Next

A357821 Denominators of the partial alternating sums of the reciprocals of the Dedekind psi function (A001615).

Original entry on oeis.org

1, 3, 12, 4, 12, 6, 24, 8, 24, 72, 72, 18, 63, 504, 63, 504, 168, 504, 2520, 2520, 10080, 1120, 3360, 3360, 672, 224, 2016, 2016, 10080, 10080, 5040, 2520, 5040, 15120, 1890, 7560, 143640, 143640, 17955, 143640, 143640, 574560, 6320160, 6320160, 6320160, 6320160
Offset: 1

Views

Author

Amiram Eldar, Oct 14 2022

Keywords

Comments

See A357820 for more details.

Crossrefs

Cf. A001615, A173290, A357820 (numerators).
Similar sequence: A211178.

Programs

  • Mathematica
    psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Denominator[Accumulate[1/Array[(-1)^(# + 1)*psi[#] &, 50]]]
  • PARI
    f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    a(n) = denominator(sum(k=1, n, (-1)^(k+1)/f(k))); \\ Michel Marcus, Oct 15 2022

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/psi(k)).

A031359 Bisection of A001615.

Original entry on oeis.org

1, 4, 6, 8, 12, 12, 14, 24, 18, 20, 32, 24, 30, 36, 30, 32, 48, 48, 38, 56, 42, 44, 72, 48, 56, 72, 54, 72, 80, 60, 62, 96, 84, 68, 96, 72, 74, 120, 96, 80, 108, 84, 108, 120, 90, 112, 128, 120, 98, 144, 102, 104, 192, 108, 110, 152, 114, 144, 168, 144, 132, 168
Offset: 1

Views

Author

Keywords

Comments

Number of coincidence site lattices of index 2n-1 in lattice Z^3.

Examples

			G.f. = x + 4*x^2 + 6*x^3 + 8*x^4 + 12*x^5 + 12*x^6 + 14*x^7 + 24*x^8 + ...
G.f. = q + 4*q^3 + 6*q^5 + 8*q^7 + 12*q^9 + 12*q^11 + 14*q^13 + 24*q^15 + ...
		

References

  • Michael Baake, "Solution of the coincidence problem in dimensions d <= 4", in R. V. Moody, ed., Mathematics of Long-Range Aperiodic Order, Kluwer, 1997, pp. 9-44.

Crossrefs

Programs

  • Haskell
    a031359 = a001615 . (subtract 1) . (* 2)
    -- Reinhard Zumkeller, Jun 03 2013
    
  • Maple
    A001615 := n -> mul((op(1,i)+1)*op(1,i)^(op(2,i)-1),i=op(2,numtheory[ifactors](n)));
    A031359 := n -> A001615(2*n-1); # Peter Luschny, Oct 23 2010
  • Mathematica
    a[n_] := (2n-1)*Sum[ MoebiusMu[d]^2/d, {d, Divisors[2n-1]}]; Table[a[n], {n, 1, 62}] (* Jean-François Alcover, Jan 18 2012, after Michael Somos *)
    a[ n_] := If[ n < 1, 0, With[{m = 2 n - 1}, m Sum[ MoebiusMu[ d]^2 / d, {d, Divisors[m]}]]] (* Michael Somos, Nov 22 2013 *)
  • PARI
    {a(n) = my(m); if( n<1, 0, m = 2*n - 1; m * sumdiv( m, d, moebius(d)^2 / d))} /* Michael Somos, Nov 22 2013 */
    
  • PARI
    {a(n) = my(m); if( n<1, 0, m = 2*n - 1; direuler( p=2, m, (1 + X) / (1 - p*X))[ m])} /* Michael Somos, Nov 22 2013 */
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, n = 2*n - 1; A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 0, p^(e-1) * (p + 1)))))} /* Michael Somos, Nov 22 2013 */

Formula

a(n) = b(2*n - 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = p^(e-1) * (p+1) if p > 2. - Michael Somos, Nov 22 2013
Dirichlet series: Product (1+p^(-s))/(1-p^(1-s)); p != 2.
a(n) = A001615(2*n - 1).
From Peter Bala, Mar 19 2019: (Start)
a(n) = (2*n - 1)*Product_{p|(2*n-1), p prime} (1 + 1/p).
a(n) = Sum_{ d|(2*n-1) } mu(d)^2*(2*n-1)/d, where mu(n) = A008683(n) is the Möbius function.
a(n) = Sum_{ d^2|(2*n-1) } mu(d)*sigma((2*n-1)/d^2), where sigma(n) = A000203(n) is the sum of the divisors of n, and also
a(n) = Sum_{ d|(2*n-1) } 2^omega(d)*phi((2*n-1)/d), where omega(n) = A001221(n) is the number of different primes dividing n and phi(n) = A000010 is the Euler totient function.
O.g.f.: Sum_{n >= 1} mu(2*n-1)^2*x^n*(1 + x^(2*n-1))/(1 - x^(2*n-1))^2.
Bisection of A159634. (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = 12/Pi^2 = 1.215854... . - Amiram Eldar, Nov 24 2022

Extensions

Better description from Vladeta Jovovic, Jan 25 2002
More terms from Sascha Kurz, Mar 24 2002

A240111 Numbers for which the value of the Dedekind psi function (A001615) are less than the value of the infinitary Dedekind psi function (A049417).

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 72, 88, 96, 104, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 200, 216, 224, 232, 243, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 352, 360, 375, 376, 378, 384, 392, 408, 416, 424, 440, 456, 459, 472, 480, 486
Offset: 1

Views

Author

Vladimir Shevelev, Apr 01 2014

Keywords

Comments

Numbers k for which Product_{p|k} (1 + 1/p) < Product_{q is in Q_k} (1 + 1/q), where {p} are primes, {q} are terms of A050376 and Q_k is the set of distinct q's whose product is k.
The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 1, 10, 108, 1072, 10679, 106722, 1067287, 10672851, 106728514, 1067285714, ... . Apparently, the asymptotic density of this sequence exists and equals 0.1067285... . - Amiram Eldar, Feb 13 2025

Crossrefs

Complement of A240112 within the nonsquarefree numbers (A013929).

Programs

  • Mathematica
    f1[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; f2[p_, e_] := (p+1)*p^(e-1); q[1] = False; q[n_] := Module[{fct = FactorInteger[n]}, Times @@ f2 @@@ fct < Times @@ f1 @@@ fct]; Select[Range[500], q] (* Amiram Eldar, Feb 13 2025 *)
  • PARI
    isok(k) = {my(f = factor(k), b); prod(i=1, #f~, (f[i, 1]+1)*f[i, 1]^(f[i, 2]-1)) < prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)));} \\ Amiram Eldar, Feb 13 2025

Extensions

More terms from Peter J. C. Moses, Apr 02 2014

A291043 Numbers n such that psi(n) = psi(n+1), where psi(n) is Dedekind psi function (A001615).

Original entry on oeis.org

4, 8, 14, 15, 32, 44, 45, 62, 63, 75, 135, 188, 195, 567, 608, 663, 704, 825, 956, 957, 1023, 1034, 1275, 1334, 1484, 1634, 1845, 1935, 2223, 2534, 2685, 2751, 2871, 3195, 3404, 3843, 3915, 4994, 7004, 7315, 7544, 8024, 8055, 9207, 10695, 11205, 11984, 12032
Offset: 1

Views

Author

Amiram Eldar, Aug 16 2017

Keywords

Comments

The only solutions to psi(n) = psi(n+1) = psi(n+2) below 10^8 are 14, 44, 62, 956.
In this sequence, smallest terms k such that k and k + 1 are both product of m + 1 distinct primes are 14, 1334, 84134, 3571905, 424152105 for 1 <= m <= 5. - Altug Alkan, Aug 17 2017

Examples

			4 is in the sequence since psi(4) = psi(5) = 6.
		

Crossrefs

Programs

  • Mathematica
    psi[n_] := If[n < 1, 0, n Sum[MoebiusMu[d]^2 / d, {d, Divisors @ n}]];
    Select[Range[12000], psi[#] == psi[# + 1] &]
    SequencePosition[Table[If[n<1,0,n Sum[MoebiusMu[d]^2/d,{d,Divisors[n]}]],{n,13000}],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 22 2018 *)
  • PARI
    a001615(n) = n*sumdivmult(n, d, issquarefree(d)/d);
    isok(n) = a001615(n)==a001615(n+1) \\ Altug Alkan, Aug 17 2017, after Charles R Greathouse IV at A001615

A307055 Even k such that psi(m) = k has no solution, where psi is the Dedekind psi function A001615.

Original entry on oeis.org

2, 10, 16, 22, 26, 28, 34, 40, 46, 50, 52, 58, 64, 66, 70, 76, 78, 82, 86, 88, 92, 94, 100, 106, 116, 118, 122, 124, 130, 134, 136, 142, 146, 148, 154, 156, 166, 170, 172, 178, 184, 188, 190, 196, 202, 206, 208, 210, 214, 218, 220, 226, 232, 236, 238, 244, 246, 250
Offset: 1

Views

Author

Torlach Rush, Mar 21 2019

Keywords

Comments

Analog of the nontotients A005277.
Contains 2*p if p is in A307390. - Robert Israel, Apr 17 2019

Examples

			2 is a term because there exists no m such that psi(m) = 2.
4 is not a term because 4 = 3*(3+1)/3.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    psi:= proc(n) local p; n*mul(1+1/p, p=numtheory:-factorset(n)) end proc:
    sort(convert({seq(i,i=2..N,2)} minus map(psi, {$1..N}), list)); # Robert Israel, Apr 17 2019
  • Mathematica
    M = 1000; (* to get all terms <= M *)
    psi[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}];
    Range[2, M, 2] ~Complement~ (psi /@ Range[M]) (* Jean-François Alcover, Aug 01 2020, after Maple *)
  • PARI
    dpsi(n) = = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    isok(n) = {if (!(n%2), for (k=1, n-1,  if (dpsi(k) == n, return(0));); return (1););} \\ Michel Marcus, Mar 22 2019

A307309 Self-composition of the Dedekind psi function (A001615).

Original entry on oeis.org

1, 6, 26, 99, 348, 1194, 4000, 13326, 44058, 144066, 462504, 1459194, 4545588, 14068554, 43450848, 134213808, 414692130, 1280610858, 3948172380, 12142365042, 37235047770, 113844652986, 347103133068, 1055610536520, 3202944247674, 9697395164616, 29298206343284
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 02 2019

Keywords

Crossrefs

Programs

  • Mathematica
    g[x_] := g[x] = Sum[MoebiusMu[k]^2 x^k/(1 - x^k)^2, {k, 1, 27}]; a[n_] := a[n] = SeriesCoefficient[g[g[x]], {x, 0, n}]; Table[a[n], {n, 27}]

Formula

G.f.: g(g(x)), where g(x) = Sum_{k>=1} mu(k)^2*x^k/(1 - x^k)^2 is the g.f. of A001615.

A309324 Expansion of Sum_{k>=1} psi(k) * x^k/(1 + x^k), where psi = Dedekind psi function (A001615).

Original entry on oeis.org

1, 2, 5, 2, 7, 10, 9, 2, 17, 14, 13, 10, 15, 18, 35, 2, 19, 34, 21, 14, 45, 26, 25, 10, 37, 30, 53, 18, 31, 70, 33, 2, 65, 38, 63, 34, 39, 42, 75, 14, 43, 90, 45, 26, 119, 50, 49, 10, 65, 74, 95, 30, 55, 106, 91, 18, 105, 62, 61, 70, 63, 66, 153, 2, 105, 130, 69, 38, 125, 126, 73
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 23 2019

Keywords

Comments

Dirichlet convolution of sum of odd divisors function with characteristic function of squarefree numbers.

Crossrefs

Programs

  • Mathematica
    nmax = 71; CoefficientList[Series[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k]  x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Sum[MoebiusMu[n/d]^2 Plus @@ Select[Divisors@ d, OddQ], {d, Divisors[n]}], {n, 1, 71}]
    f[2, e_] := 2; f[p_, e_] := (p^e*(p+1)-2)/(p-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 01 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, 2, (f[i,1]^f[i,2]*(f[i,1]+1)-2)/(f[i,1]-1)));} \\ Amiram Eldar, Nov 06 2022

Formula

a(n) = Sum_{d|n} (-1)^(n/d+1) * psi(d).
a(n) = Sum_{d|n} mu(n/d)^2 * A000593(d).
Multiplicative with a(2^e) = 2, and a(p^e) = (p^e*(p+1)-2)/(p-1) for odd primes p. - Amiram Eldar, Dec 01 2020
Sum_{k=1..n} a(k) ~ (5/8) * n^2. - Amiram Eldar, Nov 06 2022

A330703 Numbers k such that psi(k) = psi(k + 2) where psi(k) is the Dedekind psi function (A001615).

Original entry on oeis.org

6, 9, 12, 14, 18, 20, 33, 44, 62, 70, 92, 108, 116, 138, 164, 175, 212, 254, 280, 308, 320, 332, 348, 356, 452, 490, 524, 558, 572, 692, 716, 764, 833, 932, 956, 1004, 1105, 1124, 1172, 1188, 1436, 1496, 1562, 1593, 1676, 1724, 1772, 1964, 2002, 2036, 2088, 2132
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2019

Keywords

Examples

			6 is in the sequence since psi(6) = psi(8) = 12.
		

Crossrefs

Programs

  • Mathematica
    psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); Select[Range[10^3], psi[#] == psi[# + 2] &]

A332042 Number of integers whose Dedekind psi function (A001615) values are n.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 1, 0, 0, 0, 4, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 5, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 4, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 6, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 9, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Feb 05 2020

Keywords

Examples

			a(6) = 2 since there are 2 solutions to psi(x) = 6: 4 and 5.
		

Crossrefs

Programs

  • Mathematica
    psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); m = 100; v = Table[0, {m}]; Do[i = psi[k]; If[i <= m, v[[i]]++], {k, 1, m}]; v

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 - 1/(p*(p+1))) = 0.7044422... (A065463). - Amiram Eldar, Dec 25 2024

A344024 a(n) = A003415(A001615(n)).

Original entry on oeis.org

0, 1, 4, 5, 5, 16, 12, 16, 16, 21, 16, 44, 9, 44, 44, 44, 21, 60, 24, 60, 80, 60, 44, 112, 31, 41, 60, 112, 31, 156, 80, 112, 112, 81, 112, 156, 21, 92, 92, 156, 41, 272, 48, 156, 156, 156, 112, 272, 92, 123, 156, 124, 81, 216, 156, 272, 176, 123, 92, 384, 33, 272, 272, 272, 124, 384, 72, 216, 272, 384, 156, 384, 39, 101
Offset: 1

Views

Author

Antti Karttunen, May 09 2021

Keywords

Comments

The first nonsquarefree numbers for which this sequence coincides with A342925 are 868, 920, 952, 4260, 4452, 4692, 5060, 5172, ...

Crossrefs

Cf. also A342925.

Programs

  • Mathematica
    {0}~Join~Array[If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &[# Product[1 + 1/p, {p, FactorInteger[#][[All, 1]]}] ] &, 73, 2] (* Michael De Vlieger, May 16 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A344024(n) = A003415(A001615(n));

Formula

a(A005117(n)) = A342925(A005117(n)) for all n.
Previous Showing 51-60 of 326 results. Next