cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 462 results. Next

A085254 Numbers having a unique representation as sum of two powerful numbers (A001694).

Original entry on oeis.org

2, 5, 8, 9, 10, 12, 13, 16, 18, 20, 24, 25, 26, 28, 29, 31, 32, 34, 35, 37, 43, 44, 45, 48, 53, 54, 58, 59, 61, 63, 64, 74, 82, 88, 90, 91, 96, 98, 99, 100, 101, 106, 112, 121, 122, 124, 126, 127, 128, 134, 135, 140, 141, 146, 149, 150, 155, 161, 162, 169, 171
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2003

Keywords

Crossrefs

Programs

  • Mathematica
    With[{m = 180}, pow = Select[Range[m], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]; Position[BinCounts[Select[Plus @@@ Union[Sort /@ Tuples[pow, {2}]], # <= m &], {1, m, 1}], 1] // Flatten] (* Amiram Eldar, Jan 30 2023 *)

Formula

A085252(a(n)) = 1.

A085255 Numbers having at least two representations as a sum of two powerful numbers (A001694).

Original entry on oeis.org

17, 33, 36, 40, 41, 50, 52, 57, 65, 68, 72, 73, 76, 80, 81, 85, 89, 97, 104, 108, 109, 113, 116, 117, 125, 129, 130, 132, 133, 136, 137, 144, 145, 148, 152, 153, 157, 160, 164, 170, 172, 177, 180, 185, 189, 193, 197, 200, 201, 204, 205, 208, 209, 216, 221
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2003

Keywords

Crossrefs

Programs

  • Mathematica
    With[{m = 222}, pow = Select[Range[m], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]; Position[BinCounts[Select[Plus @@@ Union[Sort /@ Tuples[pow, {2}]], # <= m &], {1, m, 1}], ?(# > 1 &)] // Flatten] (* _Amiram Eldar, Jan 30 2023 *)

Formula

A085252(a(n)) > 1.

A115651 Powerful(1) numbers (A001694) which are the sum of distinct double factorials (A006882).

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 27, 49, 64, 72, 108, 121, 125, 128, 169, 392, 400, 432, 441, 500, 512, 961, 968, 972, 1125, 1331, 1352, 1444, 3844, 3888, 3969, 4225, 4232, 4356, 4900, 4913, 5184, 5292, 5324, 10404, 10800, 10952, 11449, 11881, 14283, 14400
Offset: 1

Views

Author

Giovanni Resta, Jan 28 2006

Keywords

Comments

Double factorials 0!! and 1!! are not considered distinct. Note that double factorial (n!!) is different from (n!)!.

Examples

			392 = 2^3*7^2 = 8!! + 4!!.
		

Crossrefs

A115656 Both n and the reverse of n are powerful(1) numbers (A001694).

Original entry on oeis.org

1, 4, 8, 9, 27, 72, 100, 121, 144, 169, 343, 400, 441, 484, 576, 675, 676, 800, 900, 961, 1000, 1089, 1331, 1800, 2700, 3087, 4000, 7200, 7803, 8000, 9000, 9801, 10000, 10201, 10404, 10609, 12100, 12321, 12544, 12769, 14400, 14641, 14884
Offset: 1

Views

Author

Giovanni Resta, Jan 28 2006

Keywords

Examples

			9801=3^4*11^2 and 1089=3^2*11^2.
		

Crossrefs

Programs

  • PARI
    is(n)=ispowerful(n) && ispowerful(subst(Polrev(digits(n)),'x,10)) \\ Charles R Greathouse IV, Sep 16 2014
    
  • PARI
    has(n)=ispowerful(subst(Polrev(digits(n)),'x,10))
    list(lim)=my(v=List(),t,t2); for(m=1,lim^(1/3), t=m^3; for(n=1,sqrtint(lim\t), if(has(t2=t*n^2), listput(v,t2)))); Set(v) \\ Charles R Greathouse IV, Sep 16 2014

A323332 The Dedekind psi function values of the powerful numbers, A001615(A001694(n)).

Original entry on oeis.org

1, 6, 12, 12, 24, 30, 36, 48, 72, 56, 96, 144, 108, 180, 216, 132, 150, 192, 288, 182, 336, 360, 432, 360, 324, 384, 576, 306, 648, 392, 380, 672, 720, 864, 672, 792, 900, 768, 552, 1152, 750, 1296, 1080, 1092, 972, 1344, 1440, 870, 1728, 2160, 992, 1584
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The sum of the reciprocals of all the terms of this sequence is Pi^2/6 (A013661).
The asymptotic density of a sequence S that possesses the property that an integer k is a term if and only if its powerful part, A057521(k) is a term, is (1/zeta(2)) * Sum_{n>=1, A001694(n) is a term of S} 1/a(n). Examples for such sequences are the e-perfect numbers (A054979), the exponential abundant numbers (A129575), and other sequences listed in the Crossrefs section. - Amiram Eldar, May 06 2025

Crossrefs

Sequences whose density can be calculated using this sequence: A054979, A129575, A307958, A308053, A321147, A322858, A323310, A328135, A339936, A340109, A364990, A382061, A383693, A383695, A383697.

Programs

  • Mathematica
    psi[1]=1; psi[n_] := n * Times@@(1+1/Transpose[FactorInteger[n]][[1]]); psi /@ Join[{1}, Select[Range@ 1200, Min@ FactorInteger[#][[All, 2]] > 1 &]] (* after T. D. Noe at A001615 and Harvey P. Dale at A001694 *)
  • Python
    from math import isqrt, prod
    from sympy import mobius, integer_nthroot, primefactors
    def A323332(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x-squarefreepi(integer_nthroot(x,3)[0]), 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        a = primefactors(m:=bisection(f,n,n))
        return m*prod(p+1 for p in a)//prod(a) # Chai Wah Wu, Sep 14 2024

A356871 Primitive coreful abundant numbers (second definition): coreful abundant numbers (A308053) that are powerful numbers (A001694).

Original entry on oeis.org

72, 108, 144, 200, 216, 288, 324, 400, 432, 576, 648, 784, 800, 864, 900, 972, 1000, 1152, 1296, 1568, 1600, 1728, 1764, 1800, 1936, 1944, 2000, 2304, 2592, 2700, 2704, 2744, 2916, 3136, 3200, 3456, 3528, 3600, 3872, 3888, 4000, 4356, 4500, 4608, 4900, 5000, 5184
Offset: 1

Views

Author

Amiram Eldar, Sep 02 2022

Keywords

Comments

For squarefree numbers k, csigma(k) = k, where csigma(k) is the sum of the coreful divisors of k (A057723). Thus, if m is a term (csigma(m) > 2*m) and k is a squarefree number coprime to k, then csigma(k*m) = csigma(k) * csigma(m) = k * csigma(m) > 2*k*m, so k*m is a coreful abundant number. Therefore, the sequence of coreful abundant numbers (A308053) can be generated from this sequence by multiplying with coprime squarefree numbers. The asymptotic density of the coreful abundant numbers can be calculated from this sequence (see comment in A308053).

Examples

			72 is a term since csigma(72) = 168 > 2 * 72, and 72 = 2^3 * 3^2 is powerful.
		

Crossrefs

Intersection of A001694 and A308053.
A339940 is a subsequence.
Cf. A057723.
Similar sequences: A307959, A328136.

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1)-1; s[1] = 1; s[n_] := If[AllTrue[(fct = FactorInteger[n])[[;;, 2]], #>1 &], Times @@ f @@@ fct, 0]; seq={}; Do[If[s[n] > 2*n, AppendTo[seq, n]], {n, 1, 5000}]; seq

A360721 a(n) is the number of infinitary divisors of n that are powerful (A001694).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Feb 18 2023

Keywords

Crossrefs

Similar sequences: A005361 (number of powerful divisors), A323308 (number of unitary powerful divisors).

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1] - Mod[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 2^hammingweight(f[i, 2]) - f[i, 2]%2);}

Formula

Multiplicative with a(p^e) = 2^A000120(e) - (e mod 2).
a(n) <= A037445(n) with equality if and only if n is a square.
a(n) <= A005361(n) with equality if and only if n is not in A360723.
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} ((1-1/p) * Sum_{k>=1} ((2^A000120(k)- k mod 2)/p^k)) = 1.72717... .

A363176 Primitive abundant numbers (A091191) that are powerful numbers (A001694).

Original entry on oeis.org

196, 15376, 342225, 570375, 1032256, 3172468, 4636684, 63126063, 99198099, 117234117, 171991125, 280495504, 319600125, 327921075, 404529741, 581549787, 635689593, 762155163, 1029447225, 1148667664, 1356949503, 1435045924, 1501500375, 1558495125, 1596961444, 1757705625
Offset: 1

Views

Author

Amiram Eldar, May 19 2023

Keywords

Comments

The least cubefull (A036966) term is a(158) = 26376098024367 = 3^6 * 7^4 * 13^3 * 19^3.
A363175 is a subsequence. Terms that are not in A363175: 196, 15376, 1032256, 274810802176, 1125882727038976, 72057319160283136, ... .

Crossrefs

Intersection of A001694 and A091191.
A363175 is a subsequence.
Subsequence of A363169.
Cf. A036966.

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p^(e + 1) - p^e); f2[p_, e_] := (p^(e + 1) - p)/(p^(e + 1) - 1);
    primAbQ[n_] := (r = Times @@ f1 @@@ (f = FactorInteger[n])) > 2 && r * Max @@ f2 @@@ f <= 2;
    seq[max_] := Module[{pow = Union[Flatten[Table[i^2*j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}]]]}, Select[Rest[pow], primAbQ]]; seq[10^10]
  • PARI
    isPrimAb(n) = {my(f = factor(n), r, p, e); r = sigma(f, -1); r > 2 && vecmax(vector(#f~, i, p = f[i, 1]; e = f[i, 2]; (p^(e + 1) - p)/(p^(e + 1) - 1))) * r <= 2; }
    lista(lim) = {my(pow = List(), t); for(j=1, sqrtnint(lim\1, 3), for(i=1, sqrtint(lim\j^3), listput(pow, i^2*j^3))); select(x->isPrimAb(x), Set(pow)); }

A240590 Number of primes between successive powerful numbers (A001694).

Original entry on oeis.org

2, 2, 0, 2, 3, 0, 2, 0, 4, 3, 2, 2, 3, 3, 2, 0, 1, 3, 5, 5, 2, 1, 1, 5, 1, 7, 0, 5, 2, 4, 5, 1, 5, 2, 7, 3, 2, 2, 6, 9, 4, 4, 0, 7, 8, 2, 7, 4, 4, 8, 1, 1, 4, 4, 9, 7, 2, 1, 9, 10, 6, 1, 0, 2, 0, 9, 12, 7, 4, 12, 6, 5, 4, 5, 12, 0, 8, 3, 3, 10, 8, 0, 2, 13, 2, 13, 10, 10, 1, 15, 0, 7, 9, 9, 3, 13, 7, 4, 0, 7, 5, 4, 13, 2
Offset: 1

Views

Author

Antonio Roldán, Apr 08 2014

Keywords

Examples

			a(9) = 4 because A001694(9) = 36, A001694(10) = 49, and there are 4 primes between them: 37, 41, 43 and 47.
		

Crossrefs

Programs

  • PARI
    ispowerful(n)={local(h);if(n==1,h=1,h=(vecmin(factor(n)[, 2])>1));return(h)}
    proxpowerful(n)={local(k);k=n+1;while(!ispowerful(k),k+=1);return(k)}
    {for(i=1,5000,if(ispowerful(i),m=proxpowerful(i);p=primepi(m)-primepi(i);print1(p, ", ")))}
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot, primepi
    def A240590(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x,3)[0])-l
            return c
        return -primepi(a:=bisection(f,n,n))+primepi(bisection(lambda x:f(x)+1,a,a)) # Chai Wah Wu, Sep 15 2024

A306458 a(n) = A001694(n)/A007947(A001694(n)), the powerful numbers divided by their squarefree kernel.

Original entry on oeis.org

1, 2, 4, 3, 8, 5, 9, 16, 6, 7, 32, 12, 27, 10, 18, 11, 25, 64, 24, 13, 14, 20, 36, 15, 81, 128, 48, 17, 54, 49, 19, 28, 40, 72, 21, 22, 50, 256, 23, 96, 125, 108, 45, 26, 243, 56, 80, 29, 144, 30, 31, 44, 162, 100, 512, 33, 75, 192, 34, 35, 216, 63, 121, 52
Offset: 1

Views

Author

Amiram Eldar, Feb 17 2019

Keywords

Comments

A permutation of the positive integers.

Crossrefs

Programs

  • Maple
    N:= 10^4: # to get terms corresponding to powerful numbers <= N
    rad:= n -> convert(numtheory:-factorset(n), `*`):
    S:= {1}:
    p:= 1:
    do
      p:= nextprime(p);
      if p^2 > N then break fi;
      S:= S union map(t -> seq(t*p^i,i=2..floor(log[p](N/t))),select(`<=`,S,N/p^2));
    od:
    map(t -> t/rad(t), sort(convert(S,list))); # Robert Israel, Mar 20 2019
  • Mathematica
    p=Join[{1}, Select[ Range@ 12500, Min@ FactorInteger[#][[All, 2]] > 1 &]]; rad[n_] := Times @@ (First@# & /@ FactorInteger@ n);  p/(rad/@p) (* after Harvey P. Dale at A001694 and Robert G. Wilson v at A007947 *)
  • PARI
    apply(x->(x/factorback(factorint(x)[, 1])), select(x->ispowerful(x), vector(1600, k, k))) \\ Michel Marcus, Feb 17 2019
    
  • Python
    from math import isqrt, prod
    from sympy import mobius, integer_nthroot, primefactors
    def A306458(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x-squarefreepi(integer_nthroot(x,3)[0]), 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        return (m:=bisection(f,n,n))//prod(primefactors(m)) # Chai Wah Wu, Sep 14 2024

Formula

A064549(a(n)) = A001694(n).
Previous Showing 21-30 of 462 results. Next