A357028
E.g.f. satisfies A(x) = (1 - x * A(x))^log(1 - x * A(x)).
Original entry on oeis.org
1, 0, 2, 6, 82, 820, 13568, 235368, 5111748, 123205248, 3404436312, 103998026880, 3516027852456, 129715202957184, 5198615642907360, 224652658604613120, 10419411912935774736, 516120552745366247424, 27198524267826237745824
Offset: 0
-
m = 20; (* number of terms *)
A[_] = 0;
Do[A[x_] = (1 - x*A[x])^Log[1 - x*A[x]] + O[x]^m // Normal, {m}];
CoefficientList[A[x], x]*Range[0, m - 1]! (* Jean-François Alcover, Sep 12 2022 *)
-
a(n) = sum(k=0, n\2, (2*k)!*(n+1)^(k-1)*abs(stirling(n, 2*k, 1))/k!);
A357029
E.g.f. satisfies A(x) = 1/(1 - x * A(x))^(log(1 - x * A(x))^2).
Original entry on oeis.org
1, 0, 0, 6, 36, 210, 3870, 70224, 1122072, 23086344, 586910880, 15469437456, 441107126856, 14206113541152, 496333927370736, 18463733657766144, 739328759822848320, 31759148433997889280, 1447876893211813379520, 69881726567495477445120
Offset: 0
-
m = 20; (* number of terms *)
A[_] = 0;
Do[A[x_] = 1/(1 - x*A[x])^(Log[1 - x*A[x]]^2) + O[x]^m // Normal, {m}];
CoefficientList[A[x], x]*Range[0, m - 1]! (* Jean-François Alcover, Sep 12 2022 *)
-
a(n) = sum(k=0, n\3, (3*k)!*(n+1)^(k-1)*abs(stirling(n, 3*k, 1))/k!);
A052795
a(n) = (6*n)!/(5*n+1)!.
Original entry on oeis.org
1, 1, 12, 306, 12144, 657720, 45239040, 3776965920, 371090522880, 41951580652800, 5364506808460800, 765606216965990400, 120639963305775513600, 20803502274492921984000, 3896911902445736638464000, 787971434323820421362688000, 171063718698166603304067072000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Prod(Z,S,S,S,S,S),S=Sequence(B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20); # end of program
seq((6*n)!/(5*n+1)!, n=0..20); # Mark van Hoeij, May 29 2013
-
a(n) = (6*n)!/(5*n+1)!; \\ Joerg Arndt, May 29 2013
-
from sympy import ff
def A052795(n): return ff(6*n,n-1) # Chai Wah Wu, Sep 01 2023
Accidentally removed a(0) reinserted by
Georg Fischer, May 09 2021
A105725
Triangle read by rows: T(n,k)=(n+k)!/k! (0<=k<=n-1; n>=1).
Original entry on oeis.org
1, 2, 6, 6, 24, 60, 24, 120, 360, 840, 120, 720, 2520, 6720, 15120, 720, 5040, 20160, 60480, 151200, 332640, 5040, 40320, 181440, 604800, 1663200, 3991680, 8648640, 40320, 362880, 1814400, 6652800, 19958400, 51891840, 121080960, 259459200
Offset: 1
1
2 6
6 24 60
24 120 360 840
120 720 2520 6720 15120
720 5040 20160 60480 151200 332640
5040 40320 181440 604800 1663200 3991680 8648640
40320 362880 1814400 6652800 19958400 51891840 121080960 259459200
A152029
a(n) = 2^n*(2*n)!/((n+1)!).
Original entry on oeis.org
1, 2, 16, 240, 5376, 161280, 6082560, 276756480, 14760345600, 903333150720, 62412108595200, 4805732361830400, 408117579035443200, 37896632339005440000, 3819980539771748352000, 415422883700177633280000, 48482294191832495554560000, 6044126009248451112468480000
Offset: 0
-
[2^n*Factorial(2*n)/Factorial(n+1): n in [0..20]]; // Vincenzo Librandi, Jan 27 2017
-
seq(2^n*(2*n)!/(n+1)!,n=0..40); # Robert Israel, Jan 25 2017
-
Table[(2^n) (2 n)! / (n + 1)!, {n, 0, 20}] (* Vincenzo Librandi, Jan 27 2017 *)
With[{nn=20},CoefficientList[Series[2/(1+(1-8x)^(1/2)),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 11 2023 *)
-
a(n) = 2^n*(2*n)!/(n+1)! \\ Michel Marcus, Jun 02 2013
A349599
E.g.f. satisfies: log(A(x)) = 1 - exp(-x*A(x)^2).
Original entry on oeis.org
1, 1, 4, 29, 305, 4192, 70875, 1416781, 32551650, 841273527, 24032201213, 747395938962, 24946766300549, 880465276003861, 32274320771151308, 1197240324544640433, 42849289206116498093, 1304855947753532683776, 14954863230501575196551, -2798084168801754024136463
Offset: 0
-
a(n) = sum(k=0, n, (-1)^(n-k)*(2*n+1)^(k-1)*stirling(n, k, 2));
A357036
E.g.f. satisfies A(x) = (1 - x * A(x))^(log(1 - x * A(x)) / 2).
Original entry on oeis.org
1, 0, 1, 3, 26, 230, 2794, 39564, 663606, 12712104, 275171106, 6632699040, 176309074644, 5123121177096, 161577261004860, 5497133655605760, 200683752698028924, 7825434930630743616, 324616635150708044796, 14273994548639305751040, 663205761925601097418488
Offset: 0
-
m = 21; (* number of terms *)
A[_] = 0;
Do[A[x_] = (1 - x*A[x])^(Log[1 - x*A[x]]/2) + O[x]^m // Normal, {m}];
CoefficientList[A[x], x]*Range[0, m - 1]! (* Jean-François Alcover, Sep 12 2022 *)
-
a(n) = sum(k=0, n\2, (2*k)!*(n+1)^(k-1)*abs(stirling(n, 2*k, 1))/(2^k*k!));
A357037
E.g.f. satisfies A(x) = 1/(1 - x * A(x))^(log(1 - x * A(x))^2 / 6).
Original entry on oeis.org
1, 0, 0, 1, 6, 35, 295, 3304, 42112, 599724, 9657330, 174222576, 3464835726, 75208002792, 1771121398956, 44998593873024, 1226723273550720, 35714547582173280, 1106012915718532920, 36304411160854523520, 1259105580819317636280, 46007354360033491345920
Offset: 0
-
m = 22; (* number of terms *)
A[_] = 0;
Do[A[x_] = 1/(1 - x*A[x])^(Log[1 - x*A[x]]^2/6) + O[x]^m // Normal, {m}];
CoefficientList[A[x], x]*Range[0, m - 1]! (* Jean-François Alcover, Sep 12 2022 *)
-
a(n) = sum(k=0, n\3, (3*k)!*(n+1)^(k-1)*abs(stirling(n, 3*k, 1))/(6^k*k!));
A355767
E.g.f. satisfies A(x)^(A(x)^2) = 1/(1 - x*A(x)).
Original entry on oeis.org
1, 1, 0, 6, -4, 300, -828, 42224, -266992, 11916864, -132472320, 5688511488, -95465876064, 4138883728512, -95019458907072, 4276023328128000, -125481256750340352, 5958015717717504000, -212934915549001078272, 10767675634298110255104
Offset: 0
-
a(n) = sum(k=0, n, (n-2*k+1)^(k-1)*abs(stirling(n, k, 1)));
A064307
Triangle of coefficients of certain numerator polynomials N(n,x).
Original entry on oeis.org
1, 1, 0, 1, 2, 1, 1, 10, 17, 2, 1, 37, 181, 111, 6, 1, 126, 1530, 2624, 741, 18, 1, 422, 11607, 43940, 34063, 4950, 57, 1, 1422, 83823, 616894, 1013799, 412698, 33337, 186, 1, 4853, 593203, 7846573, 23794925
Offset: 1
Triangle begins:
1;
1, 0;
1, 2, 1; N(3,x) = 1+2*x+x^2 = (1+x)^2.
1, 10, 17, 2;
1, 37, 181, 111, 6;
...
Comments