cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A357028 E.g.f. satisfies A(x) = (1 - x * A(x))^log(1 - x * A(x)).

Original entry on oeis.org

1, 0, 2, 6, 82, 820, 13568, 235368, 5111748, 123205248, 3404436312, 103998026880, 3516027852456, 129715202957184, 5198615642907360, 224652658604613120, 10419411912935774736, 516120552745366247424, 27198524267826237745824
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 20; (* number of terms *)
    A[_] = 0;
    Do[A[x_] = (1 - x*A[x])^Log[1 - x*A[x]] + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x]*Range[0, m - 1]! (* Jean-François Alcover, Sep 12 2022 *)
  • PARI
    a(n) = sum(k=0, n\2, (2*k)!*(n+1)^(k-1)*abs(stirling(n, 2*k, 1))/k!);

Formula

E.g.f. satisfies log(A(x)) = log(1 - x * A(x))^2.
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * (n+1)^(k-1) * |Stirling1(n,2*k)|/k!.

A357029 E.g.f. satisfies A(x) = 1/(1 - x * A(x))^(log(1 - x * A(x))^2).

Original entry on oeis.org

1, 0, 0, 6, 36, 210, 3870, 70224, 1122072, 23086344, 586910880, 15469437456, 441107126856, 14206113541152, 496333927370736, 18463733657766144, 739328759822848320, 31759148433997889280, 1447876893211813379520, 69881726567495477445120
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 20; (* number of terms *)
    A[_] = 0;
    Do[A[x_] = 1/(1 - x*A[x])^(Log[1 - x*A[x]]^2) + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x]*Range[0, m - 1]! (* Jean-François Alcover, Sep 12 2022 *)
  • PARI
    a(n) = sum(k=0, n\3, (3*k)!*(n+1)^(k-1)*abs(stirling(n, 3*k, 1))/k!);

Formula

E.g.f. satisfies log(A(x)) = -log(1 - x * A(x))^3.
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * (n+1)^(k-1) * |Stirling1(n,3*k)|/k!.

A052795 a(n) = (6*n)!/(5*n+1)!.

Original entry on oeis.org

1, 1, 12, 306, 12144, 657720, 45239040, 3776965920, 371090522880, 41951580652800, 5364506808460800, 765606216965990400, 120639963305775513600, 20803502274492921984000, 3896911902445736638464000, 787971434323820421362688000, 171063718698166603304067072000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Old name was: A simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{B=Prod(Z,S,S,S,S,S),S=Sequence(B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20); # end of program
    seq((6*n)!/(5*n+1)!, n=0..20);  # Mark van Hoeij, May 29 2013
  • PARI
    a(n) = (6*n)!/(5*n+1)!; \\ Joerg Arndt, May 29 2013
    
  • Python
    from sympy import ff
    def A052795(n): return ff(6*n,n-1) # Chai Wah Wu, Sep 01 2023

Formula

E.g.f.: RootOf(-_Z+_Z^6*x+1).
D-finite Recurrence: {a(1)=1, a(2)=12, (-720-9864*n-48600*n^2-110160*n^3-116640*n^4-46656*n^5)*a(n)+(3125*n^4+9375*n^3+10000*n^2+4500*n+720)*a(n+1), a(6)=45239040, a(3)=306, a(4)=12144, a(5)=657720}.
1/25*3^(1/2)*(5+5^(1/2))^(1/2)*(5-5^(1/2))^(1/2)*Pi^(1/2) *GAMMA(2*n+37/3) *GAMMA(2*n+38/3)/GAMMA(n+34/5)/GAMMA(n+33/5)/GAMMA(n+32/5) /GAMMA(n+36/5) *GAMMA(n+13/2)*3125^(-6-n)*2916^(n+6).
a(n) = (6*n)!/(5*n+1)!. - Mark van Hoeij, May 29 2013
E.g.f.: exp( 1/6 * Sum_{k>=1} binomial(6*k,k) * x^k/k ). - Seiichi Manyama, Feb 08 2024
a(n) = A000142(n)*A002295(n). - Alois P. Heinz, Feb 08 2024
From Seiichi Manyama, Aug 31 2024: (Start)
E.g.f. satisfies A(x) = 1/(1 - x*A(x)^5).
a(n) = Sum_{k=0..n} (5*n+1)^(k-1) * |Stirling1(n,k)|. (End)

Extensions

New name using Mark van Hoeij's formula from Joerg Arndt, Feb 18 2019
Accidentally removed a(0) reinserted by Georg Fischer, May 09 2021

A105725 Triangle read by rows: T(n,k)=(n+k)!/k! (0<=k<=n-1; n>=1).

Original entry on oeis.org

1, 2, 6, 6, 24, 60, 24, 120, 360, 840, 120, 720, 2520, 6720, 15120, 720, 5040, 20160, 60480, 151200, 332640, 5040, 40320, 181440, 604800, 1663200, 3991680, 8648640, 40320, 362880, 1814400, 6652800, 19958400, 51891840, 121080960, 259459200
Offset: 1

Views

Author

Amarnath Murthy, Apr 18 2005

Keywords

Comments

T(n,n-1)=(2n-1)!/(n-1)! (A000407); T(n,0)=n! (A000142); Row sums yield A092956; Arithmetic means of the rows yield A001761.
Has many diagonals in common with A068424. - Zerinvary Lajos, Apr 14 2006

Examples

			1
2 6
6 24 60
24 120 360 840
120 720 2520 6720 15120
720 5040 20160 60480 151200 332640
5040 40320 181440 604800 1663200 3991680 8648640
40320 362880 1814400 6652800 19958400 51891840 121080960 259459200
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k
    				

Formula

T(n, k)=(n+k)!/k! (0<=k<=n-1; n>=1).

Extensions

More terms from Emeric Deutsch, Apr 18 2005

A152029 a(n) = 2^n*(2*n)!/((n+1)!).

Original entry on oeis.org

1, 2, 16, 240, 5376, 161280, 6082560, 276756480, 14760345600, 903333150720, 62412108595200, 4805732361830400, 408117579035443200, 37896632339005440000, 3819980539771748352000, 415422883700177633280000, 48482294191832495554560000, 6044126009248451112468480000
Offset: 0

Views

Author

N. J. A. Sloane, Sep 15 2009

Keywords

Programs

  • Magma
    [2^n*Factorial(2*n)/Factorial(n+1): n in [0..20]]; // Vincenzo Librandi, Jan 27 2017
  • Maple
    seq(2^n*(2*n)!/(n+1)!,n=0..40); # Robert Israel, Jan 25 2017
  • Mathematica
    Table[(2^n) (2 n)! / (n + 1)!, {n, 0, 20}] (* Vincenzo Librandi, Jan 27 2017 *)
    With[{nn=20},CoefficientList[Series[2/(1+(1-8x)^(1/2)),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 11 2023 *)
  • PARI
    a(n) = 2^n*(2*n)!/(n+1)! \\ Michel Marcus, Jun 02 2013
    

Formula

E.g.f 2/(1+(1-8*x)^(1/2)). - Sergei N. Gladkovskii, Oct 26 2012
a(n) = 2^n * A001761(n) = A065140(n)/(n+1)!. - Michel Marcus, Jun 02 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - 2*x/(2*x + (k+2)/((2*k+1)*(2*k+2))/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 03 2013
4*(n+1)*(2*n+1)*a(n) = (n+2)*a(n+1). - Robert Israel, Jan 25 2017
E.g.f.: 1/(1 - 2*x/(1 - 2*x/(1 - 2*x/(1 - 2*x/(1 - 2*x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, May 10 2017

A349599 E.g.f. satisfies: log(A(x)) = 1 - exp(-x*A(x)^2).

Original entry on oeis.org

1, 1, 4, 29, 305, 4192, 70875, 1416781, 32551650, 841273527, 24032201213, 747395938962, 24946766300549, 880465276003861, 32274320771151308, 1197240324544640433, 42849289206116498093, 1304855947753532683776, 14954863230501575196551, -2798084168801754024136463
Offset: 0

Views

Author

Seiichi Manyama, Nov 22 2021

Keywords

Comments

a(19) < 0.

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*(2*n+1)^(k-1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * (2*n+1)^(k-1) * Stirling2(n,k).

A357036 E.g.f. satisfies A(x) = (1 - x * A(x))^(log(1 - x * A(x)) / 2).

Original entry on oeis.org

1, 0, 1, 3, 26, 230, 2794, 39564, 663606, 12712104, 275171106, 6632699040, 176309074644, 5123121177096, 161577261004860, 5497133655605760, 200683752698028924, 7825434930630743616, 324616635150708044796, 14273994548639305751040, 663205761925601097418488
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 21; (* number of terms *)
    A[_] = 0;
    Do[A[x_] = (1 - x*A[x])^(Log[1 - x*A[x]]/2) + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x]*Range[0, m - 1]! (* Jean-François Alcover, Sep 12 2022 *)
  • PARI
    a(n) = sum(k=0, n\2, (2*k)!*(n+1)^(k-1)*abs(stirling(n, 2*k, 1))/(2^k*k!));

Formula

E.g.f. satisfies log(A(x)) = log(1 - x * A(x))^2 / 2.
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * (n+1)^(k-1) * |Stirling1(n,2*k)|/(2^k * k!).

A357037 E.g.f. satisfies A(x) = 1/(1 - x * A(x))^(log(1 - x * A(x))^2 / 6).

Original entry on oeis.org

1, 0, 0, 1, 6, 35, 295, 3304, 42112, 599724, 9657330, 174222576, 3464835726, 75208002792, 1771121398956, 44998593873024, 1226723273550720, 35714547582173280, 1106012915718532920, 36304411160854523520, 1259105580819317636280, 46007354360033491345920
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 22; (* number of terms *)
    A[_] = 0;
    Do[A[x_] = 1/(1 - x*A[x])^(Log[1 - x*A[x]]^2/6) + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x]*Range[0, m - 1]! (* Jean-François Alcover, Sep 12 2022 *)
  • PARI
    a(n) = sum(k=0, n\3, (3*k)!*(n+1)^(k-1)*abs(stirling(n, 3*k, 1))/(6^k*k!));

Formula

E.g.f. satisfies log(A(x)) = -log(1 - x * A(x))^3 / 6.
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * (n+1)^(k-1) * |Stirling1(n,3*k)|/(6^k * k!).

A355767 E.g.f. satisfies A(x)^(A(x)^2) = 1/(1 - x*A(x)).

Original entry on oeis.org

1, 1, 0, 6, -4, 300, -828, 42224, -266992, 11916864, -132472320, 5688511488, -95465876064, 4138883728512, -95019458907072, 4276023328128000, -125481256750340352, 5958015717717504000, -212934915549001078272, 10767675634298110255104
Offset: 0

Views

Author

Seiichi Manyama, Jul 16 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (n-2*k+1)^(k-1)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} (n-2*k+1)^(k-1) * |Stirling1(n,k)|.

A064307 Triangle of coefficients of certain numerator polynomials N(n,x).

Original entry on oeis.org

1, 1, 0, 1, 2, 1, 1, 10, 17, 2, 1, 37, 181, 111, 6, 1, 126, 1530, 2624, 741, 18, 1, 422, 11607, 43940, 34063, 4950, 57, 1, 1422, 83823, 616894, 1013799, 412698, 33337, 186, 1, 4853, 593203, 7846573, 23794925
Offset: 1

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Comments

The g.f. for the sequence in the subdiagonal d>=1 (main diagonal: d=0) of triangle A064094 is N(d,x)/(1-x)^d.
Row sums give A001761(n+1). Main diagonal gives A000957(n+1), n >= 0.

Examples

			Triangle begins:
  1;
  1, 0;
  1, 2,  1;       N(3,x) = 1+2*x+x^2 = (1+x)^2.
  1, 10, 17,  2;
  1, 37, 181, 111, 6;
  ...
		

Crossrefs

Formula

a(n, m) = [x^m]N(n, x); N(n, x) = (1-x)^(n-1) + Sum_{k=1..n-1} A064308(n-1, k)*k!*x^k*(1-x)^(n-1-k) for n >= 2; N(1, x) = 1 = N(2, x).
Previous Showing 21-30 of 39 results. Next