A055303 Number of labeled rooted trees with n nodes and 2 leaves.
3, 36, 360, 3600, 37800, 423360, 5080320, 65318400, 898128000, 13172544000, 205491686400, 3399953356800, 59499183744000, 1098446469120000, 21341245685760000, 435361411989504000, 9305850181275648000, 208013121699102720000, 4853639506312396800000
Offset: 3
Programs
-
Maple
seq(n!*(n-2)*(n-1)/4, n = 3..21); # Zerinvary Lajos, Apr 25 2008 [corrected by Georg Fischer, Aug 17 2021] f:= gfun:-rectoproc({(n-3)*a(n) - (n^2-n)*a(n-1), a(3)=3}, a(n), remember): map(f, [$3..20]); # Georg Fischer, Aug 17 2021
-
Mathematica
With[{nn=20}, Drop[CoefficientList[Series[x^3/(2(1-x)^3), {x,0,nn}], x] * Range[0,nn]!, 3]] (* Harvey P. Dale, Nov 22 2012 *)
Formula
E.g.f.: x^3/(2*(1-x)^3).
a(n) = (n-2)!*t(n-2)*t(n-1) = (n-2)!*(n-2)*(n-1)^2*n/4 = n!*(n-2)*(n-1)/4 = n!*t(n-2)/2 where t = A000217. - Jon Perry, Feb 22 2004
D-finite with recurrence: (n-3)*a(n) - (n^2 - n)*a(n-1) = 0. - Georg Fischer, Aug 17 2021
a(n) = 3 * A001754(n). - Alois P. Heinz, Aug 17 2021
Comments