cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 70 results.

A335312 A(n, k) = k! [x^k] exp(2*x)*(y*sinh(x*y) + cosh(x*y)) and y = sqrt(n). Square array read by ascending antidiagonals, for n >= 0 and k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 4, 9, 8, 1, 5, 14, 27, 16, 1, 6, 19, 48, 81, 32, 1, 7, 24, 71, 164, 243, 64, 1, 8, 29, 96, 265, 560, 729, 128, 1, 9, 34, 123, 384, 989, 1912, 2187, 256, 1, 10, 39, 152, 521, 1536, 3691, 6528, 6561, 512, 1, 11, 44, 183, 676, 2207, 6144, 13775, 22288, 19683, 1024
Offset: 0

Views

Author

Peter Luschny, Jun 24 2020

Keywords

Examples

			[0] 1, 2, 4,    8,  16,   32,    64,   128,    256,     512, ...  [A000079]
[1] 1, 3, 9,   27,  81,  243,   729,  2187,   6561,   19683, ...  [A000244]
[2] 1, 4, 14,  48, 164,  560,  1912,  6528,  22288,   76096, ...  [A007070]
[3] 1, 5, 19,  71, 265,  989,  3691, 13775,  51409,  191861, ...  [A001834]
[4] 1, 6, 24,  96, 384, 1536,  6144, 24576,  98304,  393216, ...  [A164908]
[5] 1, 7, 29, 123, 521, 2207,  9349, 39603, 167761,  710647, ...  [A048876]
[6] 1, 8, 34, 152, 676, 3008, 13384, 59552, 264976, 1179008, ...  [A335749]
		

Crossrefs

Cf. A000079 (n=0), A000244 (n=1), A007070 (n=2), A001834 (n=3), A164908 (n=4), A048876 (n=5), A335749 (n=6).

Programs

  • Maple
    Arow := proc(n, len) local H; H := (x, y) -> exp(2*x)*(y*sinh(x*y) + cosh(x*y)):
    series(H(x, sqrt(n)), x, len+1): seq(k!*coeff(%, x, k), k=0..len-1) end:
    A := (n, k) -> Arow(n, k+2)[k+1]: seq(lprint(Arow(n, 9)), n=0..6);
    # Alternative:
    A := proc(n, k) option remember; if k = 0 then return 1 fi;
    if k = 1 then return n+2 fi; 4*A(n, k-1) + (n-4)*A(n, k-2) end;

Formula

The Taylor series of exp(2*x)*(y*sinh(x*y) + cosh(x*y)) starts: 1 + x*(y^2 + 2) + x^2*((5*y^2)/2 + 2) + (1/6)*x^3*(y^4 + 18*y^2 + 8) + x^4*((3*y^4)/8 + (7*y^2)/3 + 2/3) + O(x^5). The coefficient polynomials expand in even powers (cf. A118800).
A(n, k) = k! [x^k] (c*exp(x*(1 + c)) + d*exp(x*(1 + d)))/2 where c = 1 + sqrt(n) and d = 1 - sqrt(n).
A(n, k) = 4*A(n, k-1) + (n-4)*A(n, k-2) if k >= 2. A(n, 0) = 1, A(n, 1) = n + 2.

A055269 a(n) = 4*a(n-1) - a(n-2) + 3 with a(0)=1, a(1)=7.

Original entry on oeis.org

1, 7, 30, 116, 437, 1635, 6106, 22792, 85065, 317471, 1184822, 4421820, 16502461, 61588027, 229849650, 857810576, 3201392657, 11947760055, 44589647566, 166410830212, 621053673285, 2317803862931, 8650161778442, 32282843250840, 120481211224921, 449642001648847
Offset: 0

Views

Author

Barry E. Williams, May 10 2000

Keywords

Comments

Also partial sums of A054491.

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Programs

  • Magma
    I:=[1,7,30]; [n le 3 select I[n] else 5*Self(n-1) - 5*Self(n-2) + Self(n-3): n in [1..40]]; // G. C. Greubel, Mar 16 2020
    
  • Maple
    A055269:= n-> simplify((5*ChebyshevU(n, 2) - 3*ChebyshevU(n-1, 2) - 3)/2); seq( A055269(n), n=0..40); # G. C. Greubel, Mar 16 2020
  • Mathematica
    LinearRecurrence[{5,-5,1},{1,7,30},40] (* or *) CoefficientList[ Series[ (1+2*x)/(1-5*x+5*x^2-x^3),{x,0,40}],x] (* Harvey P. Dale, Dec 01 2013 *)
    Table[(5*ChebyshevU[n, 2] -3*ChebyshevU[n-1, 2] - 3)/2, {n,0,40}] (* G. C. Greubel, Mar 16 2020 *)
  • Sage
    [(5*chebyshev_U(n, 2) - 3*chebyshev_U(n-1, 2) - 3)/2 for n in (0..40)] # G. C. Greubel, Mar 16 2020

Formula

G.f.: (1+2*x)/((1-x)*(1-4*x+x^2)).
a(n) = ( ( (17 - 5*(2-sqrt(3)))*(2+sqrt(3))^n + (5*(2+sqrt(3))-17)*(2-sqrt(3))^n )/(4*sqrt(3)) ) - 3/2.
a(n) = (5*ChebyshevU(n, 2) - 3*ChebyshevU(n-1, 2) - 3)/2. - G. C. Greubel, Mar 16 2020

Extensions

Corrected by T. D. Noe, Nov 07 2006

A102207 a(n) = 5a(n-1) - 5a(n-2) + a(n-3) with a(0) = 4, a(1) = 17, a(2) = 65.

Original entry on oeis.org

4, 17, 65, 244, 912, 3405, 12709, 47432, 177020, 660649, 2465577, 9201660, 34341064, 128162597, 478309325, 1785074704, 6661989492, 24862883265, 92789543569, 346295291012, 1292391620480, 4823271190909, 18000693143157
Offset: 0

Views

Author

Creighton Dement, Dec 30 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 4; a[1] = 17; a[2] = 65; a[n_] := a[n] = 5a[n - 1] - 5a[n - 2] + a[n - 3]; Table[ a[n], {n, 0, 22}] (* Or *)
    CoefficientList[ Series[(3x - 4)/((x - 1)(x^2 - 4x + 1)), {x, 0, 22}], x] (* Robert G. Wilson v, Jan 12 2005 *)
    LinearRecurrence[{5,-5,1},{4,17,65},30] (* or *) With[{c=Sqrt[3]},Table[ Simplify[ ((3-7c)(2-c)^x+(2+c)^x (3+7c)-6)/12],{x,30}]] (* Harvey P. Dale, Mar 15 2013 *)

Formula

G.f.: (3x-4)/((x-1)(x^2-4x+1))
(1/2) [A001353(n+1) + 5*A001353(n) - 1 ]. - Ralf Stephan, May 17 2007
a(n)=1/12*((3-7*Sqrt[3])*(2-Sqrt[3])^n+(3+7*Sqrt[3])*(2+Sqrt[3])^n-6). - Harvey P. Dale, Mar 15 2013

Extensions

More terms from Robert G. Wilson v, Jan 12 2005

A107388 Expansion of x*(3*x-1)*(2*x-1) / ( (1-x)*(1+x)*(x^2-4*x+1) ).

Original entry on oeis.org

0, 1, -1, 2, 4, 21, 75, 286, 1064, 3977, 14839, 55386, 206700, 771421, 2878979, 10744502, 40099024, 149651601, 558507375, 2084377906, 7779004244, 29031639077, 108347552059, 404358569166, 1509086724600, 5631988329241, 21018866592359, 78443478040202
Offset: 0

Views

Author

Roger L. Bagula, May 24 2005, corrected Sep 04 2008

Keywords

Comments

One of the components of the n-th power of the 4X4 matrix with rows (0,1,0,0), (0,0,1,0), (0,0,0,1), (1,4,0,-4) multiplied by the vector (0,1,1,2).

Programs

  • Mathematica
    CoefficientList[Series[x(3x-1)(2x-1)/((1-x)(1+x)(x^2-4x+1)),{x,0,40}],x] (* or *) LinearRecurrence[ {4,0,-4,1},{0,1,-1,2},40] (* Harvey P. Dale, Jun 17 2023 *)

Formula

a(n) = (-1)^(n+1)+(3*A001353(n+1)-11*A001353(n)-1)/2. - R. J. Mathar, Jul 10 2012
a(n) -a(n-2) = A001834(n-3). - R. J. Mathar, Dec 17 2017

Extensions

Sign of a(2) flipped. - R. J. Mathar, Jul 10 2012

A254308 a(n) = a(n-1) + (if a(n-1) is odd a(n-2) else a(n-3)) with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 11, 19, 30, 41, 71, 112, 153, 265, 418, 571, 989, 1560, 2131, 3691, 5822, 7953, 13775, 21728, 29681, 51409, 81090, 110771, 191861, 302632, 413403, 716035, 1129438, 1542841, 2672279, 4215120, 5757961, 9973081, 15731042, 21489003, 37220045
Offset: 0

Views

Author

Russell Walsmith, Feb 23 2015

Keywords

Comments

Every third iteration is a tribonacci-type recursion: a(n) = a(n-1) + a(n-3) otherwise it is Fibonacci-type a(n) = a(n-1) + a(n-2).

Examples

			For n = 7, a(n-1) is even so 8 + 3 = 11.
G.f. = x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + 11*x^7 + 19*x^8 + 30*x^9 + ...
		

Crossrefs

Programs

  • Haskell
    a254308 n = a254308_list !! n
    a254308_list = 0 : 1 : 1 : zipWith3 (\u v w -> u + if odd u then v else w)
                   (drop 2 a254308_list) (tail a254308_list) a254308_list
    -- Reinhard Zumkeller, Feb 24 2015
    
  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x+2*x^2-x^3+x^4)/(1-4*x^3+x^6))); // G. C. Greubel, Aug 03 2018
  • Mathematica
    CoefficientList[Series[x*(1+x+2*x^2-x^3+x^4)/(1-4*x^3+x^6), {x, 0, 60}], x] (* G. C. Greubel, Aug 03 2018 *)
    nxt[{a_,b_,c_}]:={b,c,If[OddQ[c],c+b,c+a]}; NestList[nxt,{0,1,1},50][[All,1]] (* or *) LinearRecurrence[{0,0,4,0,0,-1},{0,1,1,2,3,5},50] (* Harvey P. Dale, May 12 2022 *)
  • PARI
    {a(n) = polcoeff( x * if( n<0, n=-n; -(1 - x + 2*x^2 + x^3 + x^4), (1 + x + 2*x^2 - x^3 + x^4)) / (1 - 4*x^3 + x^6) + x * O(x^n), n)}; /* Michael Somos, Feb 23 2015 */
    

Formula

Two identities: a(3n)/2 + a(3n-3)/2 = a(3n-1); a(3n)/2 - a(3n-3)/2 = a(3n-2).
G.f.: x * (1 + x + 2*x^2 - x^3 + x^4) / (1 - 4*x^3 + x^6). - Michael Somos, Feb 23 2015
0 = a(n) - 4*a(n+3) + a(n+6) for all n in Z. - Michael Somos, Feb 23 2015
a(3*n) = A052530(n). a(3*n-2) = A001835(n). a(3*n+2) = A001834(n). - Michael Somos, Feb 23 2015

A341671 Solutions y of the Diophantine equation 3*(x^2+x+1) = y^2.

Original entry on oeis.org

3, 39, 543, 7563, 105339, 1467183, 20435223, 284625939, 3964327923, 55215964983, 769059181839, 10711612580763, 149193516948843, 2077997624703039, 28942773228893703, 403120827579808803, 5614748812888429539, 78203362552858204743, 1089232326927126436863, 15171049214426911911339
Offset: 1

Views

Author

Bernard Schott, Feb 17 2021

Keywords

Comments

Corresponding x are in A028231.
This equation belongs to the family of equations studied by Kustaa A. Inkeri, y^m = a * (x^q-1)/(x-1) with here: m=2, a=3, q=3. This equation is exhibed in A307745 by Giovanni Resta to prove that this sequence has infinitely many terms.
This Diophantine equation 3*(x^2+x+1) = y^2 has infinitely many solutions because the Pell-Fermat equation u^2 - 3*v^2 = -2 also has infinitely many solutions. The corresponding (u,v) are in (A001834, A001835) and for each pair (u,v), the corresponding solutions of 3*(x^2+x+1) = y^2 are x = (3*u*v-1)/2 and y = 3*(u^2+1)/2.
Note that if y = 3*z, this equation becomes 3*z^2 = x^2+x+1 with solutions (x, z) = (A028231, A001570).

Examples

			The first few values for (x,y) are (1,3), (22,39), (313,543), (4366,7563), (60817,105339), ...
		

Crossrefs

Subsequence of A158235, for a(n)>3.

Programs

  • Mathematica
    f[x_] := Sqrt[3*(x^2 + x + 1)]; f /@ LinearRecurrence[{15, -15, 1}, {1, 22, 313}, 20] (* Amiram Eldar, Feb 17 2021 *)

Formula

a(n) = 3*A001570(n). - Hugo Pfoertner, Feb 17 2021
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3).

Extensions

More terms from Amiram Eldar, Feb 17 2021

A342568 1/a(n) is the current through the resistor at the central rung of an electrical ladder network made of 6*n+1 one-ohm resistors, fed by 1 volt at diametrically opposite ends of the ladder.

Original entry on oeis.org

1, 7, 45, 239, 1157, 5307, 23497, 101467, 430089, 1796975, 7422437, 30373191, 123327373, 497484067, 1995542913, 7965875891, 31663779857, 125391332055, 494914083229, 1947613051807, 7643917792917, 29928228744587, 116921300015417, 455866012012299, 1774126607984665
Offset: 0

Views

Author

Hugo Pfoertner, Jun 10 2021

Keywords

Examples

			   a(0)=1         a(1)=7                      a(2)=45
   o 1V       o-----o-----o 1V       o-----o-----o-----o-----o 1V
   |          |     |     |          |     |     |     |     |
   |          |     |     |          |     |     |     |     |
  1 A         |   1/7 A   |          |     |   1/45 A  |     |
   |          |     |     |          |     |     |     |     |
   |          |     |     |          |     |     |     |     |
   o 0V    0V o-----o-----o       0V o-----o-----o-----o-----o
		

Crossrefs

Bisection (odd indices) of A093652.
A001834(n)/a(n) is the total resistance of the network between diametrically opposite ends of the ladder.
Cf. A082630.

Formula

a(n) = 8*a(n-1) - 18*a(n-2) + 8*a(n-3) - a(n-4); a(0)=1, a(1)=7, a(2)=45, a(3)=239.
G.f.: (3*x^3 - 7*x^2 + x - 1)/(x^2 - 4*x + 1)^2. - Joerg Arndt, Jun 11 2021

A087945 Expansion of (1-2x-x^2)/((1-2x)(1-4x+x^2)).

Original entry on oeis.org

1, 4, 14, 50, 182, 670, 2482, 9226, 34358, 128078, 477698, 1782202, 6650086, 24816094, 92610194, 345616490, 1289839382, 4813708270, 17964928162, 67045873306, 250218302918, 933826814078, 3485087904818, 13006522708042
Offset: 0

Views

Author

Paul Barry, Sep 16 2003

Keywords

Comments

First differences of A087944. Binomial transform of A052948(n+1). a(n)=(2/3)A001834+2^n/3.

Programs

  • Mathematica
    CoefficientList[Series[(1-2x-x^2)/((1-2x)(1-4x+x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{6,-9,2},{1,4,14},30] (* Harvey P. Dale, Aug 21 2021 *)

Formula

a(0)=1, a(2)=4, a(2)=14, a(n)=6a(n-1)-9a(n-2)+2a(n-3), n>2; a(n)=(2^n+(1-sqrt(3))(2-sqrt(3))^n+(1+sqrt(3))(2+sqrt(3))^n)/3.

A106851 Expansion of (-3*x^3 - 7*x^2 + 2*x)/((1-4*x-x^2)*(1-4*x+x^2)).

Original entry on oeis.org

0, 2, 9, 37, 152, 626, 2585, 10701, 44400, 184610, 769065, 3209461, 13415048, 56153618, 235357241, 987609501, 4148575200, 17443003202, 73402179657, 309116995525, 1302649664888, 5492768393906, 23173154692697, 97810060234605
Offset: 0

Views

Author

Roger L. Bagula, May 30 2005

Keywords

Programs

  • Mathematica
    CoefficientList[Series[(-3 x^3-7x^2+2x)/((1-4x-x^2)(1-4x+x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{8,-16,0,1},{0,2,9,37},31] (* Harvey P. Dale, Aug 05 2011 *)

Formula

G.f.: (-3*x^3 - 7*x^2 + 2*x)/((1-4*x-x^2)*(1-4*x+x^2)).
a(n) = (1/2) * [A001834(n-1) + Fibonacci(3n+1) ]. - Ralf Stephan, Nov 18 2010
a(0)=0, a(1)=2, a(2)=9, a(3)=37, a(n)=8*a(n-1)-16*a(n-2)+a(n-4) [Harvey P. Dale, Aug 05 2011]

Extensions

Edited by N. J. A. Sloane, Apr 09 2007
New name from Joerg Arndt, Dec 26 2022

A255445 Number of ON cells after n generations of the odd-rule cellular automaton defined by OddRule 037 when started with a single ON cell.

Original entry on oeis.org

1, 5, 5, 19, 5, 25, 19, 71, 5, 25, 25, 95, 19, 95, 71, 265, 5, 25, 25, 95, 25, 125, 95, 355, 19, 95, 95, 361, 71, 355, 265, 989, 5, 25, 25, 95, 25, 125, 95, 355, 25, 125, 125, 475, 95, 475, 355, 1325, 19, 95, 95, 361, 95, 475, 361, 1349, 71, 355, 355, 1349
Offset: 0

Views

Author

Keywords

Crossrefs

Run length transform of A001834.

Programs

  • Mathematica
    (* b = a1834 *) b[0] = 1; b[1] = 5; b[n_] := b[n] = 4 b[n-1] - b[n-2];
    Table[Times @@ (b[Length[#]]&) /@ Select[Split[IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 59}] (* Jean-François Alcover, Sep 15 2018 *)
Previous Showing 61-70 of 70 results.