A335312
A(n, k) = k! [x^k] exp(2*x)*(y*sinh(x*y) + cosh(x*y)) and y = sqrt(n). Square array read by ascending antidiagonals, for n >= 0 and k >= 0.
Original entry on oeis.org
1, 1, 2, 1, 3, 4, 1, 4, 9, 8, 1, 5, 14, 27, 16, 1, 6, 19, 48, 81, 32, 1, 7, 24, 71, 164, 243, 64, 1, 8, 29, 96, 265, 560, 729, 128, 1, 9, 34, 123, 384, 989, 1912, 2187, 256, 1, 10, 39, 152, 521, 1536, 3691, 6528, 6561, 512, 1, 11, 44, 183, 676, 2207, 6144, 13775, 22288, 19683, 1024
Offset: 0
[0] 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ... [A000079]
[1] 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, ... [A000244]
[2] 1, 4, 14, 48, 164, 560, 1912, 6528, 22288, 76096, ... [A007070]
[3] 1, 5, 19, 71, 265, 989, 3691, 13775, 51409, 191861, ... [A001834]
[4] 1, 6, 24, 96, 384, 1536, 6144, 24576, 98304, 393216, ... [A164908]
[5] 1, 7, 29, 123, 521, 2207, 9349, 39603, 167761, 710647, ... [A048876]
[6] 1, 8, 34, 152, 676, 3008, 13384, 59552, 264976, 1179008, ... [A335749]
-
Arow := proc(n, len) local H; H := (x, y) -> exp(2*x)*(y*sinh(x*y) + cosh(x*y)):
series(H(x, sqrt(n)), x, len+1): seq(k!*coeff(%, x, k), k=0..len-1) end:
A := (n, k) -> Arow(n, k+2)[k+1]: seq(lprint(Arow(n, 9)), n=0..6);
# Alternative:
A := proc(n, k) option remember; if k = 0 then return 1 fi;
if k = 1 then return n+2 fi; 4*A(n, k-1) + (n-4)*A(n, k-2) end;
A055269
a(n) = 4*a(n-1) - a(n-2) + 3 with a(0)=1, a(1)=7.
Original entry on oeis.org
1, 7, 30, 116, 437, 1635, 6106, 22792, 85065, 317471, 1184822, 4421820, 16502461, 61588027, 229849650, 857810576, 3201392657, 11947760055, 44589647566, 166410830212, 621053673285, 2317803862931, 8650161778442, 32282843250840, 120481211224921, 449642001648847
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
- Index entries for linear recurrences with constant coefficients, signature (5,-5,1).
-
I:=[1,7,30]; [n le 3 select I[n] else 5*Self(n-1) - 5*Self(n-2) + Self(n-3): n in [1..40]]; // G. C. Greubel, Mar 16 2020
-
A055269:= n-> simplify((5*ChebyshevU(n, 2) - 3*ChebyshevU(n-1, 2) - 3)/2); seq( A055269(n), n=0..40); # G. C. Greubel, Mar 16 2020
-
LinearRecurrence[{5,-5,1},{1,7,30},40] (* or *) CoefficientList[ Series[ (1+2*x)/(1-5*x+5*x^2-x^3),{x,0,40}],x] (* Harvey P. Dale, Dec 01 2013 *)
Table[(5*ChebyshevU[n, 2] -3*ChebyshevU[n-1, 2] - 3)/2, {n,0,40}] (* G. C. Greubel, Mar 16 2020 *)
-
[(5*chebyshev_U(n, 2) - 3*chebyshev_U(n-1, 2) - 3)/2 for n in (0..40)] # G. C. Greubel, Mar 16 2020
A102207
a(n) = 5a(n-1) - 5a(n-2) + a(n-3) with a(0) = 4, a(1) = 17, a(2) = 65.
Original entry on oeis.org
4, 17, 65, 244, 912, 3405, 12709, 47432, 177020, 660649, 2465577, 9201660, 34341064, 128162597, 478309325, 1785074704, 6661989492, 24862883265, 92789543569, 346295291012, 1292391620480, 4823271190909, 18000693143157
Offset: 0
-
a[0] = 4; a[1] = 17; a[2] = 65; a[n_] := a[n] = 5a[n - 1] - 5a[n - 2] + a[n - 3]; Table[ a[n], {n, 0, 22}] (* Or *)
CoefficientList[ Series[(3x - 4)/((x - 1)(x^2 - 4x + 1)), {x, 0, 22}], x] (* Robert G. Wilson v, Jan 12 2005 *)
LinearRecurrence[{5,-5,1},{4,17,65},30] (* or *) With[{c=Sqrt[3]},Table[ Simplify[ ((3-7c)(2-c)^x+(2+c)^x (3+7c)-6)/12],{x,30}]] (* Harvey P. Dale, Mar 15 2013 *)
A107388
Expansion of x*(3*x-1)*(2*x-1) / ( (1-x)*(1+x)*(x^2-4*x+1) ).
Original entry on oeis.org
0, 1, -1, 2, 4, 21, 75, 286, 1064, 3977, 14839, 55386, 206700, 771421, 2878979, 10744502, 40099024, 149651601, 558507375, 2084377906, 7779004244, 29031639077, 108347552059, 404358569166, 1509086724600, 5631988329241, 21018866592359, 78443478040202
Offset: 0
-
CoefficientList[Series[x(3x-1)(2x-1)/((1-x)(1+x)(x^2-4x+1)),{x,0,40}],x] (* or *) LinearRecurrence[ {4,0,-4,1},{0,1,-1,2},40] (* Harvey P. Dale, Jun 17 2023 *)
A254308
a(n) = a(n-1) + (if a(n-1) is odd a(n-2) else a(n-3)) with a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 1, 2, 3, 5, 8, 11, 19, 30, 41, 71, 112, 153, 265, 418, 571, 989, 1560, 2131, 3691, 5822, 7953, 13775, 21728, 29681, 51409, 81090, 110771, 191861, 302632, 413403, 716035, 1129438, 1542841, 2672279, 4215120, 5757961, 9973081, 15731042, 21489003, 37220045
Offset: 0
For n = 7, a(n-1) is even so 8 + 3 = 11.
G.f. = x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + 11*x^7 + 19*x^8 + 30*x^9 + ...
-
a254308 n = a254308_list !! n
a254308_list = 0 : 1 : 1 : zipWith3 (\u v w -> u + if odd u then v else w)
(drop 2 a254308_list) (tail a254308_list) a254308_list
-- Reinhard Zumkeller, Feb 24 2015
-
m:=60; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x+2*x^2-x^3+x^4)/(1-4*x^3+x^6))); // G. C. Greubel, Aug 03 2018
-
CoefficientList[Series[x*(1+x+2*x^2-x^3+x^4)/(1-4*x^3+x^6), {x, 0, 60}], x] (* G. C. Greubel, Aug 03 2018 *)
nxt[{a_,b_,c_}]:={b,c,If[OddQ[c],c+b,c+a]}; NestList[nxt,{0,1,1},50][[All,1]] (* or *) LinearRecurrence[{0,0,4,0,0,-1},{0,1,1,2,3,5},50] (* Harvey P. Dale, May 12 2022 *)
-
{a(n) = polcoeff( x * if( n<0, n=-n; -(1 - x + 2*x^2 + x^3 + x^4), (1 + x + 2*x^2 - x^3 + x^4)) / (1 - 4*x^3 + x^6) + x * O(x^n), n)}; /* Michael Somos, Feb 23 2015 */
A341671
Solutions y of the Diophantine equation 3*(x^2+x+1) = y^2.
Original entry on oeis.org
3, 39, 543, 7563, 105339, 1467183, 20435223, 284625939, 3964327923, 55215964983, 769059181839, 10711612580763, 149193516948843, 2077997624703039, 28942773228893703, 403120827579808803, 5614748812888429539, 78203362552858204743, 1089232326927126436863, 15171049214426911911339
Offset: 1
The first few values for (x,y) are (1,3), (22,39), (313,543), (4366,7563), (60817,105339), ...
Subsequence of
A158235, for a(n)>3.
-
f[x_] := Sqrt[3*(x^2 + x + 1)]; f /@ LinearRecurrence[{15, -15, 1}, {1, 22, 313}, 20] (* Amiram Eldar, Feb 17 2021 *)
A342568
1/a(n) is the current through the resistor at the central rung of an electrical ladder network made of 6*n+1 one-ohm resistors, fed by 1 volt at diametrically opposite ends of the ladder.
Original entry on oeis.org
1, 7, 45, 239, 1157, 5307, 23497, 101467, 430089, 1796975, 7422437, 30373191, 123327373, 497484067, 1995542913, 7965875891, 31663779857, 125391332055, 494914083229, 1947613051807, 7643917792917, 29928228744587, 116921300015417, 455866012012299, 1774126607984665
Offset: 0
a(0)=1 a(1)=7 a(2)=45
o 1V o-----o-----o 1V o-----o-----o-----o-----o 1V
| | | | | | | | |
| | | | | | | | |
1 A | 1/7 A | | | 1/45 A | |
| | | | | | | | |
| | | | | | | | |
o 0V 0V o-----o-----o 0V o-----o-----o-----o-----o
Bisection (odd indices) of
A093652.
A001834(n)/a(n) is the total resistance of the network between diametrically opposite ends of the ladder.
A087945
Expansion of (1-2x-x^2)/((1-2x)(1-4x+x^2)).
Original entry on oeis.org
1, 4, 14, 50, 182, 670, 2482, 9226, 34358, 128078, 477698, 1782202, 6650086, 24816094, 92610194, 345616490, 1289839382, 4813708270, 17964928162, 67045873306, 250218302918, 933826814078, 3485087904818, 13006522708042
Offset: 0
-
CoefficientList[Series[(1-2x-x^2)/((1-2x)(1-4x+x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{6,-9,2},{1,4,14},30] (* Harvey P. Dale, Aug 21 2021 *)
A106851
Expansion of (-3*x^3 - 7*x^2 + 2*x)/((1-4*x-x^2)*(1-4*x+x^2)).
Original entry on oeis.org
0, 2, 9, 37, 152, 626, 2585, 10701, 44400, 184610, 769065, 3209461, 13415048, 56153618, 235357241, 987609501, 4148575200, 17443003202, 73402179657, 309116995525, 1302649664888, 5492768393906, 23173154692697, 97810060234605
Offset: 0
-
CoefficientList[Series[(-3 x^3-7x^2+2x)/((1-4x-x^2)(1-4x+x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{8,-16,0,1},{0,2,9,37},31] (* Harvey P. Dale, Aug 05 2011 *)
A255445
Number of ON cells after n generations of the odd-rule cellular automaton defined by OddRule 037 when started with a single ON cell.
Original entry on oeis.org
1, 5, 5, 19, 5, 25, 19, 71, 5, 25, 25, 95, 19, 95, 71, 265, 5, 25, 25, 95, 25, 125, 95, 355, 19, 95, 95, 361, 71, 355, 265, 989, 5, 25, 25, 95, 25, 125, 95, 355, 25, 125, 125, 475, 95, 475, 355, 1325, 19, 95, 95, 361, 95, 475, 361, 1349, 71, 355, 355, 1349
Offset: 0
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Index entries for sequences related to cellular automata
-
(* b = a1834 *) b[0] = 1; b[1] = 5; b[n_] := b[n] = 4 b[n-1] - b[n-2];
Table[Times @@ (b[Length[#]]&) /@ Select[Split[IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 59}] (* Jean-François Alcover, Sep 15 2018 *)
Comments