cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 75 results. Next

A108617 Triangle read by rows: T(n,k) = T(n-1,k-1) + T(n-1,k) for 0 < k < n, T(n,0) = T(n,n) = n-th Fibonacci number.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 3, 3, 2, 3, 5, 6, 5, 3, 5, 8, 11, 11, 8, 5, 8, 13, 19, 22, 19, 13, 8, 13, 21, 32, 41, 41, 32, 21, 13, 21, 34, 53, 73, 82, 73, 53, 34, 21, 34, 55, 87, 126, 155, 155, 126, 87, 55, 34, 55, 89, 142, 213, 281, 310, 281, 213, 142, 89, 55, 89, 144, 231, 355, 494, 591, 591, 494, 355, 231, 144, 89
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 12 2005

Keywords

Comments

Sum of n-th row = 2*A027934(n). - Reinhard Zumkeller, Oct 07 2012

Examples

			Triangle begins:
   0;
   1,   1;
   1,   2,   1;
   2,   3,   3,   2;
   3,   5,   6,   5,   3;
   5,   8,  11,  11,   8,   5;
   8,  13,  19,  22,  19,  13,   8;
  13,  21,  32,  41,  41,  32,  21,  13;
  21,  34,  53,  73,  82,  73,  53,  34,  21;
  34,  55,  87, 126, 155, 155, 126,  87,  55,  34;
  55,  89, 142, 213, 281, 310, 281, 213, 142,  89,  55;
		

Crossrefs

T(2n,n) gives 2*A176085(n).

Programs

  • Haskell
    a108617 n k = a108617_tabl !! n !! k
    a108617_row n = a108617_tabl !! n
    a108617_tabl = [0] : iterate f [1,1] where
       f row@(u:v:_) = zipWith (+) ([v - u] ++ row) (row ++ [v - u])
    -- Reinhard Zumkeller, Oct 07 2012
    
  • Magma
    function T(n,k) // T = A108617
      if k eq 0 or k eq n then return Fibonacci(n);
      else return T(n-1,k-1) + T(n-1,k);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 20 2023
    
  • Maple
    A108617 := proc(n,k) option remember;
        if k = 0 or k=n then
            combinat[fibonacci](n) ;
        elif k <0 or k > n then
            0 ;
        else
            procname(n-1,k-1)+procname(n-1,k) ;
        end if;
    end proc: # R. J. Mathar, Oct 05 2012
  • Mathematica
    a[1]:={0}; a[n_]:= a[n]= Join[{Fibonacci[#]}, Map[Total, Partition[a[#],2,1]], {Fibonacci[#]}]&[n-1]; Flatten[Map[a, Range[15]]] (* Peter J. C. Moses, Apr 11 2013 *)
  • SageMath
    def T(n,k): # T = A108617
        if (k==0 or k==n): return fibonacci(n)
        else: return T(n-1,k-1) + T(n-1,k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 20 2023

Formula

T(n,0) = T(n,n) = A000045(n);
T(n,1) = T(n,n-1) = A000045(n+1) for n>0;
T(n,2) = T(n,n-2) = A000045(n+2) - 2 = A001911(n-1) for n>1;
Sum_{k=0..n} T(n,k) = 2*A027934(n-1) for n>0.
Sum_{k=0..n} (-1)^k*T(n, k) = 2*((n+1 mod 2)*Fibonacci(n-2) + [n=0]). - G. C. Greubel, Oct 20 2023

A385886 Irregular triangle read by rows listing the lengths of maximal anti-runs (sequences of distinct consecutive elements increasing by more than 1) of binary indices, duplicate rows removed.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 1, 1, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 14 2025

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
This is the triangle A384877, except all duplicates after the first instance of each composition are removed. It lists all compositions in order of their first appearance as a row of A384877.

Examples

			The binary indices of 27 are {1,2,4,5}, with maximal anti-runs ((1),(2,4),(5)), with lengths (1,2,1). After removing duplicates, this is our row 10.
The binary indices of 53 are {1,3,5,6}, with maximal anti-runs ((1,3,5),(6)), with lengths (3,1). After removing duplicates, this is our row 16.
Triangle begins:
   0: .
   1: 1
   2: 1 1
   3: 2
   4: 1 1 1
   5: 1 2
   6: 2 1
   7: 1 1 1 1
   8: 3
   9: 1 1 2
  10: 1 2 1
  11: 2 1 1
  12: 1 1 1 1 1
  13: 1 3
  14: 2 2
  15: 1 1 1 2
  16: 3 1
  17: 1 1 2 1
  18: 1 2 1 1
  19: 2 1 1 1
  20: 1 1 1 1 1 1
		

Crossrefs

In the following references, "before" is short for "before removing duplicate rows".
Positions of singleton rows appear to be A001906 = A055588 - 1.
Positions of rows of the form (1,1,...) appear to be A001911-2, before A023758.
Row sums appear to be A200648, before A000120.
Row lengths appear to be A200649, before A384890.
Standard composition numbers of each row appear to be A348366.
Before we had A384877, ranks A385816, firsts A052499.
For runs instead of anti-runs we have A385817, see A245563, A245562, A246029.

Programs

  • Mathematica
    DeleteDuplicates[Table[Length/@Split[Join@@Position[Reverse[IntegerDigits[n,2]],1],#2!=#1+1&],{n,0,100}]]

A050143 A(n,k) = Sum_{h=0..n-1, m=0..k} A(h,m) for n >= 1 and k >= 1, with A(n,0) = 1 for n >= 0 and A(0,k) = 0 for k >= 1; square array A, read by descending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 4, 7, 1, 0, 1, 5, 12, 15, 1, 0, 1, 6, 18, 32, 31, 1, 0, 1, 7, 25, 56, 80, 63, 1, 0, 1, 8, 33, 88, 160, 192, 127, 1, 0, 1, 9, 42, 129, 280, 432, 448, 255, 1, 0, 1, 10, 52, 180, 450, 832, 1120, 1024, 511, 1
Offset: 1

Views

Author

Keywords

Comments

The triangular version of this square array is defined by T(n,k) = A(k,n-k) for 0 <= k <= n. Conversely, A(n,k) = T(n+k,n) for n,k >= 0. We have [o.g.f of T](x,y) = [o.g.f. of A](x*y, x) and [o.g.f. of A](x,y) = [o.g.f. of T](y,x/y). - Petros Hadjicostas, Feb 11 2021
Formatted as a triangular array with offset (0,8), it is [0, 1, 0, -1, 1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 1, 0, 0, 0, 0, ...], where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 05 2006
The sum of the first two columns [of the rectangular array] gives the powers of 2; that is, Sum_{j=0..1} A(i,j) = 2^i, i >= 0. On the other hand, for i >= 1 and j >= 2, A(i,j) is the number of lattice paths of i-1 upsteps (1,1) and j-1 downsteps (1,-1) in which each downstep-free vertex is colored red or blue. A downstep-free vertex is one not incident with a downstep. For example, dots indicate the downstep-free vertices in the path .U.U.UDU.UDDU., and with i = j = 2, A(2,2) = 4 counts UD, *UD, DU, DU*, where asterisks indicate the red vertices. - David Callan, Aug 27 2011

Examples

			Square array A(n,k) (with rows n >= 0 and columns k >= 0) begins:
  1,   0,   0,    0,    0,    0,    0,     0,     0,     0, ...
  1,   1,   1,    1,    1,    1,    1,     1,     1,     1, ...
  1,   3,   4,    5,    6,    7,    8,     9,    10,    11, ...
  1,   7,  12,   18,   25,   33,   42,    52,    63,    75, ...
  1,  15,  32,   56,   88,  129,  180,   242,   316,   403, ...
  1,  31,  80,  160,  280,  450,  681,   985,  1375,  1865, ...
  1,  63, 192,  432,  832, 1452, 2364,  3653,  5418,  7773, ...
  1, 127, 448, 1120, 2352, 4424, 7700, 12642, 19825, 29953, ...
  ...
If we read the above square array by descending antidiagonals, we get the following triangular array T(n,k) (with rows n >= 0 and columns 0 <= k <= n):
   1;
   0, 1;
   0, 1, 1;
   0, 1, 3,  1;
   0, 1, 4,  7,   1;
   0, 1, 5, 12,  15,   1;
   0, 1, 6, 18,  32,  31,   1;
   0, 1, 7, 25,  56,  80,  63,   1;
   0, 1, 8, 33,  88, 160, 192, 127,   1;
   0, 1, 9, 42, 129, 280, 432, 448, 255, 1;
   ...
		

Crossrefs

Antidiagonal sums are odd-indexed Fibonacci numbers (A001519).
Signed alternating antidiagonal sums are Fibonacci(n)-2, as in A001911.
Cf. A000225, A001792, A050147, A050148, A055807 (mirror array of triangle), A084938.

Programs

  • Mathematica
    T[n_, k_] := If[n == k, 1, JacobiP[k - 1, 1, n - 2*k - 1, 3]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Nov 25 2021 *)

Formula

Formulas for the square array (A(n,k): n,k >= 0):
A(n,1) = -1 + 2^n = A000225(n) for n >= 1.
A(n+2,2) = 4*A001792(n) for n >= 0.
From Petros Hadjicostas, Feb 11 2021: (Start)
Recurrence: A(n,k) = 2*A(n-1,k) + A(n,k-1) - A(n-1,k-1) for n >= 1 and k >= 2; with A(n,0) = 1 for n >= 0, A(0,k) = 0 for k >= 1, and A(n,1) = -1 + 2^n for n >= 1.
Bivariate o.g.f.: Sum_{n,k>=0} A(n,k)*x^n*y^k = (1 - 2*x)*(1 - y)/((1 - x)*(1 - 2*x - y + x*y)).
A(n,k) = Sum_{s=1..n} binomial(n,s)*binomial(s+k-2,k-1) for n >= 0 and k >= 1. (It can be proved by using a partial fraction decomposition on the bivariate o.g.f. above.)
A(n,k) = n*hypergeom([-n + 1, k], [2], -1) for n >= 0 and k >= 1. (End)
Formulas for the triangular array (T(n,k): 0 <= k <= n):
Sum_{k=0..n} T(n,k) = Fibonacci(2*n-1) = A001519(n) with Fibonacci(-1) = 1.
Sum_{k=0..n} (-1)^(n+k-1)*T(n,k) = Fibonacci(n+1) - 2 = A001911(n-2) with A001911(-2) = A001911(-1) = -1.
T(n,k) = A055807(n,n-k) for 0 <= k <= n.
From Petros Hadjicostas, Feb 12 2021: (Start)
Recurrence: T(n,k) = 2*T(n-1,k-1) + T(n-1,k) - T(n-2,k-1) for n >= 3 and 1 <= k <= n-2; with T(n,n) = 1 for n >= 0, T(n,0) = 0 for n >= 1, and T(n+1, n) = 2^n - 1 for n >= 1.
Bivariate o.g.f: Sum_{n,k>=0} T(n,k)*x^n*y^k = (1 - x)*(1 - 2*x*y)/((1 - x*y)*(1 - x - 2*x*y + x^2*y)).
T(n,k) = Sum_{s=1..k} binomial(k,s)*binomial(s+n-k-2, s-1) = k*hypergeom([-k+1, n-k], [2], -1) for n >= 1 and 0 <= k <= n - 1. (End)
T(n, k) = JacobiP(k - 1, 1, n - 2*k - 1, 3) n >= 0 and 0 <= k < n. - Peter Luschny, Nov 25 2021

Extensions

Various sections edited by Petros Hadjicostas, Feb 12 2021

A200763 T(n,k)=Number of 0..k arrays x(0..n-1) of n elements with nondecreasing average value.

Original entry on oeis.org

2, 3, 3, 4, 6, 4, 5, 10, 11, 5, 6, 15, 23, 19, 6, 7, 21, 42, 51, 32, 7, 8, 28, 69, 113, 110, 53, 8, 9, 36, 106, 219, 297, 233, 87, 9, 10, 45, 154, 388, 679, 767, 488, 142, 10, 11, 55, 215, 638, 1387, 2070, 1957, 1013, 231, 11, 12, 66, 290, 995, 2583, 4874, 6235, 4947, 2088
Offset: 1

Views

Author

R. H. Hardin Nov 22 2011

Keywords

Comments

Table starts
..2...3....4.....5......6......7.......8.......9.......10.......11........12
..3...6...10....15.....21.....28......36......45.......55.......66........78
..4..11...23....42.....69....106.....154.....215......290......381.......489
..5..19...51...113....219....388.....638.....995.....1483.....2133......2975
..6..32..110...297....679...1387....2583....4500.....7410....11669.....17687
..7..53..233...767...2070...4874...10283...20012....36412....62780....103412
..8..87..488..1957...6235..16919...40437...87914...176767...333702....597390
..9.142.1013..4947..18608..58198..157577..382720...850389..1757813...3420112
.10.231.2088.12419..55148.198807..609826.1654657..4062796..9195619..19445435
.11.375.4278.31006.162532.675372.2347039.7114665.19304047.47842607.109955586

Examples

			Some solutions for n=8 k=8
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..2....1....1....4....3....3....0....3....2....3....2....5....3....1....0....2
..2....7....6....2....1....2....3....2....1....4....7....3....4....5....3....6
..2....3....4....7....7....7....5....6....1....6....3....3....5....2....8....4
..4....7....6....6....4....4....4....5....1....6....4....3....3....7....3....4
..7....4....8....4....5....6....2....4....6....7....6....8....8....7....7....6
..5....5....5....6....6....5....4....7....6....4....4....4....7....4....6....8
		

Crossrefs

Column 2 is A001911(n+1)
Column 7 is A200707
Row 2 is A000217(n+1)
Row 3 is A019298(n+1)

A259222 T(n,k) is the number of (n+1) X (k+1) 0..1 arrays with each 2 X 2 subblock having clockwise pattern 0000 0011 or 0101.

Original entry on oeis.org

7, 13, 13, 24, 23, 24, 45, 40, 40, 45, 85, 71, 66, 71, 85, 162, 127, 112, 112, 127, 162, 311, 230, 192, 183, 192, 230, 311, 601, 421, 334, 303, 303, 334, 421, 601, 1168, 779, 588, 510, 487, 510, 588, 779, 1168, 2281, 1456, 1048, 869, 798, 798, 869, 1048, 1456, 2281
Offset: 1

Views

Author

R. H. Hardin, Jun 21 2015

Keywords

Comments

Table starts
7 13 24 45 85 162 311 601 1168 2281 4473 8802 17371
13 23 40 71 127 230 421 779 1456 2747 5227 10022 19345
24 40 66 112 192 334 588 1048 1890 3448 6360 11854 22308
45 71 112 183 303 510 869 1499 2616 4619 8251 14910 27249
85 127 192 303 487 798 1325 2227 3784 6499 11283 19806 35161
162 230 334 510 798 1278 2078 3422 5694 9566 16222 27774 48030
311 421 588 869 1325 2078 3319 5377 8804 14545 24225 40670 68843
601 779 1048 1499 2227 3422 5377 8591 13888 22655 37231 61598 102589
1168 1456 1890 2616 3784 5694 8804 13888 22210 35872 58368 95550 157276
2281 2747 3448 4619 6499 9566 14545 22655 35872 57455 92767 150686 245965
Each row (and each column, by symmetry) has a rational generating function (and therefore a linear recurrence with constant coefficients) because the growth from an array to the next larger one is described by the transfer matrix method. - R. J. Mathar, Oct 09 2020

Examples

			Some solutions for n=4, k=4:
  0 0 1 0 1      1 1 1 0 1      0 0 0 0 1      0 0 0 1 0
  0 0 1 0 1      0 0 0 1 0      0 0 0 0 1      0 0 0 1 0
  1 1 0 1 0      0 0 0 1 0      1 1 1 1 0      0 0 0 1 0
  0 0 1 0 1      0 0 0 1 0      0 0 0 0 1      1 1 1 0 1
  1 1 0 1 0      0 0 0 1 0      0 0 0 0 1      0 0 0 1 0
		

Crossrefs

Formula

Empirical for diagonal and column k (k=3..7 recurrences work also for k=1,2):
diagonal: a(n) = 6*a(n-1) - 10*a(n-2) - 2*a(n-3) + 16*a(n-4) - 6*a(n-5) - 5*a(n-6) + 2*a(n-7).
k=1: a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3)
k=2: a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3)
k=3: a(n) = 4*a(n-1) - 4*a(n-2) - a(n-3) + 2*a(n-4)
k=4: a(n) = 4*a(n-1) - 4*a(n-2) - a(n-3) + 2*a(n-4)
k=5: a(n) = 4*a(n-1) - 4*a(n-2) - a(n-3) + 2*a(n-4)
k=6: a(n) = 4*a(n-1) - 4*a(n-2) - a(n-3) + 2*a(n-4)
k=7: a(n) = 4*a(n-1) - 4*a(n-2) - a(n-3) + 2*a(n-4)
Empirical: T(n,k) = 2^(k+1) + 2^(n+1) + F(n+3)*F(k+3) - 2*F(n+3) - 2*F(k+3) + 2 = 2^(n+1) + A001911(k)*F(n+3) + A234933(k+1) = A234933(n+1) + A234933(k+1) + A143211(n+3,k+3) - 2, F=A000045. - Ehren Metcalfe, Dec 27 2018

A200534 T(n,k)=Number of nXk 0..2 arrays with every row and column running average nondecreasing rightwards and downwards.

Original entry on oeis.org

3, 6, 6, 11, 20, 11, 19, 57, 57, 19, 32, 146, 243, 146, 32, 53, 354, 905, 905, 354, 53, 87, 825, 3135, 4848, 3135, 825, 87, 142, 1873, 10292, 23925, 23925, 10292, 1873, 142, 231, 4169, 32556, 111085, 167171, 111085, 32556, 4169, 231, 375, 9144, 100065, 494555
Offset: 1

Views

Author

R. H. Hardin Nov 18 2011

Keywords

Comments

Table starts
...3.....6.....11.......19.........32..........53............87............142
...6....20.....57......146........354.........825..........1873...........4169
..11....57....243......905.......3135.......10292.........32556.........100065
..19...146....905.....4848......23925......111085........494555........2132979
..32...354...3135....23925.....167171.....1092645.......6820330.......41135050
..53...825..10292...111085....1092645....10000162......87098434......731106792
..87..1873..32556...494555....6820330....87098434....1056792824....12348422785
.142..4169.100065..2132979...41135050...731106792...12348422785...201092476918
.231..9144.300847..8981773..241717185..5964324991..140068079857..3178929109296
.375.19825.888587.37125420.1391776867.47562454949.1551453118671.49064050909052

Examples

			Some solutions for n=6 k=4
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..1....0..0..0..1
..0..0..1..2....0..0..0..0....0..0..0..1....0..0..1..2....0..0..1..1
..0..1..1..2....0..2..2..2....0..0..0..1....0..2..1..2....0..1..2..1
..0..2..2..2....1..1..1..2....1..1..1..2....0..1..2..2....0..1..1..1
..0..2..1..2....1..1..2..2....2..2..2..2....2..2..2..2....0..2..2..2
..0..2..2..2....2..2..2..2....1..1..2..2....1..2..2..2....1..1..2..2
		

Crossrefs

Column 1 is A001911(n+1)

A201155 T(n,k)=Number of nXk 0..2 arrays with every diagonal, row and column running average nondecreasing rightwards and downwards and diagonally.

Original entry on oeis.org

3, 6, 6, 11, 20, 11, 19, 56, 56, 19, 32, 140, 235, 140, 32, 53, 330, 860, 860, 330, 53, 87, 745, 2910, 4572, 2910, 745, 87, 142, 1634, 9287, 22183, 22183, 9287, 1634, 142, 231, 3504, 28452, 100362, 153796, 100362, 28452, 3504, 231, 375, 7388, 84473, 432048
Offset: 1

Views

Author

R. H. Hardin Nov 27 2011

Keywords

Comments

Table starts
...3.....6.....11.......19.........32..........53............87............142
...6....20.....56......140........330.........745..........1634...........3504
..11....56....235......860.......2910........9287.........28452..........84473
..19...140....860.....4572......22183......100362........432048........1791740
..32...330...2910....22183.....153796......988216.......6002677.......34907951
..53...745...9287...100362.....988216.....9005581......77316192......632331257
..87..1634..28452...432048....6002677....77316192.....938925282....10844322561
.142..3504..84473..1791740...34907951...632331257...10844322561...177169920997
.231..7388.244933..7225068..196209473..4971371594..120031503310..2771232663847
.375.15366.697065.28510387.1073245835.37852928161.1282802588833.41769721151444

Examples

			Some solutions for n=3 k=7
..0..0..0..0..0..0..1....0..0..0..0..0..0..0....0..0..0..0..1..1..1
..0..1..1..1..2..1..1....0..0..1..2..2..2..2....0..0..1..1..1..2..2
..1..1..1..1..2..2..2....0..0..1..1..2..1..1....1..1..2..2..2..2..2
		

Crossrefs

Column 1 is A001911(n+1)

A370174 Triangle read by rows: Riordan array (1/(1 - x), x*(1 + x)/(1 - x - x^2)).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 11, 15, 7, 1, 1, 19, 37, 28, 9, 1, 1, 32, 82, 87, 45, 11, 1, 1, 53, 170, 234, 169, 66, 13, 1, 1, 87, 337, 573, 535, 291, 91, 15, 1, 1, 142, 647, 1314, 1511, 1061, 461, 120, 17, 1, 1, 231, 1213, 2871, 3933, 3398, 1904, 687, 153, 19, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 29 2024

Keywords

Examples

			Triangle T(n,k) begins:
      k=0   1   2   3   4   5    6
  n=0:  1;
  n=1:  1,  1;
  n=2:  1,  3,  1;
  n=3:  1,  6,  5,  1;
  n=4:  1, 11, 15,  7,  1;
  n=5:  1, 19, 37, 28,  9,  1;
  n=6:  1, 32, 82, 87, 45, 11,  1;
  ...
87 = 28 + 37 + 7 + 15.
		

Crossrefs

Cf. A000012 (column k=0), A000384, A001911, A005408.
Cf. A057960 (row sums), A196472, A218988.

Formula

T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(n,0) = 1, T(n,k) = 0 if k > n.
Sum_{k = 0..n} T(n,k)* x^k = A000012(n), A057960(n), A196472(n+1), A218988(n-1) for x = 0, 1, 2, 3 respectively.

A180671 a(n) = Fibonacci(n+6) - Fibonacci(6).

Original entry on oeis.org

0, 5, 13, 26, 47, 81, 136, 225, 369, 602, 979, 1589, 2576, 4173, 6757, 10938, 17703, 28649, 46360, 75017, 121385, 196410, 317803, 514221, 832032, 1346261, 2178301, 3524570, 5702879, 9227457, 14930344, 24157809, 39088161, 63245978, 102334147, 165580133
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n+1) (terms doubled) are the Kn15 sums of the Fibonacci(n) triangle A104763. See A180662 for information about these knight and other chess sums.

Crossrefs

Cf. A000045.
Cf. A131524 (Kn11), A001911 (Kn12), A006327 (Kn13), A167616 (Kn14), A180671 (Kn15), A180672 (Kn16), A180673 (Kn17), A180674 (Kn18).

Programs

  • GAP
    List([0..40], n-> Fibonacci(n+6)-8); # G. C. Greubel, Jul 13 2019
  • Magma
    [Fibonacci(n+6)-Fibonacci(6): n in [0..40]]; // Vincenzo Librandi, Apr 24 2011
    
  • Maple
    nmax:=40: with(combinat): for n from 0 to nmax do a(n):=fibonacci(n+6)-fibonacci(6) od: seq(a(n),n=0..nmax);
  • Mathematica
    f[n_]:= Fibonacci[n+6] - Fibonacci[6]; Array[f, 40, 0] (* or *)
    LinearRecurrence[{2,0,-1}, {0,5,13}, 41] (* or *)
    CoefficientList[Series[x(3x+5)/(x^3-2x+1), {x,0,40}], x] (* Robert G. Wilson v, Apr 11 2017 *)
  • PARI
    for(n=1,40,print(fibonacci(n+6)-fibonacci(6))); \\ Anton Mosunov, Mar 02 2017
    
  • PARI
    concat(0, Vec(x*(5+3*x)/((1-x)*(1-x-x^2)) + O(x^40))) \\ Colin Barker, Apr 20 2017
    
  • Sage
    [fibonacci(n+6)-8 for n in (0..40)] # G. C. Greubel, Jul 13 2019
    

Formula

a(n) = F(n+6) - F(6) with F = A000045.
a(n) = a(n-1) + a(n-2) + 8 for n>1, a(0)=0, a(1)=5, and where 8 = F(6).
From Colin Barker, Apr 13 2012: (Start)
G.f.: x*(5 + 3*x)/((1 - x)*(1 - x - x^2)).
a(n) = 2*a(n-1) - a(n-3). (End)
a(n) = (-8 + (2^(-n)*((1-sqrt(5))^n*(-9+4*sqrt(5)) + (1+sqrt(5))^n*(9+4*sqrt(5)))) / sqrt(5)). - Colin Barker, Apr 20 2017

A180672 a(n) = Fibonacci(n+7) - Fibonacci(7).

Original entry on oeis.org

0, 8, 21, 42, 76, 131, 220, 364, 597, 974, 1584, 2571, 4168, 6752, 10933, 17698, 28644, 46355, 75012, 121380, 196405, 317798, 514216, 832027, 1346256, 2178296, 3524565, 5702874, 9227452, 14930339, 24157804, 39088156, 63245973
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n+1) (terms doubled) are the Kn16 sums of the Fibonacci(n) triangle A104763. See A180662 for information about these knight and other chess sums.

Crossrefs

Cf. A131524 (Kn11), A001911 (Kn12), A006327 (Kn13), A167616 (Kn14), A180671 (Kn15), A180672 (Kn16), A180673 (Kn17), A180674 (Kn18).

Programs

  • GAP
    List([0..40], n-> Fibonacci(n+7)-13 ); # G. C. Greubel, Jul 13 2019
  • Magma
    [Fibonacci(n+7) - Fibonacci(7): n in [0..40]]; // Vincenzo Librandi, Apr 24 2011
    
  • Maple
    nmax:=40: with(combinat): for n from 0 to nmax do a(n):=fibonacci(n+7)-fibonacci(7) od: seq(a(n),n=0..nmax);
  • Mathematica
    Fibonacci[7 +Range[0, 40]] -13 (* G. C. Greubel, Jul 13 2019 *)
  • PARI
    concat(0, Vec(x*(8+5*x)/((1-x)*(1-x-x^2)) + O(x^40))) \\ Colin Barker, Feb 24 2017
    
  • PARI
    a(n)=fibonacci(n+7)-fibonacci(7) \\ Charles R Greathouse IV, Feb 24 2017
    
  • Sage
    [fibonacci(n+7)-13 for n in (0..40)] # G. C. Greubel, Jul 13 2019
    

Formula

a(n) = F(n+7) - F(7) with F = A000045.
a(n) = a(n-1) + a(n-2) + 13 for n>1, a(0)=0, a(1)=8, and where 13 = F(7).
G.f.: x*(8 + 5*x)/((1 - x)*(1 - x - x^2)). - Ilya Gutkovskiy, Feb 24 2017
From Colin Barker, Feb 24 2017: (Start)
a(n) = (-13 + (2^(-1-n)*((1-sqrt(5))^n*(-29+13*sqrt(5)) + (1+sqrt(5))^n*(29+13*sqrt(5)))) / sqrt(5)).
a(n) = 2*a(n-1) - a(n-3) for n>2. (End)
a(n) = 8*A000071(n+2) + 5*A000071(n+1). - Bruno Berselli, Feb 24 2017
Previous Showing 31-40 of 75 results. Next