cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A188775 Numbers k such that Sum_{j=1..k} j^j == -1 (mod k).

Original entry on oeis.org

1, 2, 3, 6, 14, 42, 46, 1806, 2185, 4758, 5266, 10895, 24342, 26495, 44063, 52793, 381826, 543026, 547311, 805002
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A001923(k) == -1 (mod k).
a(21) > 10^7. - Hiroaki Yamanouchi, Aug 25 2015
Numbers k such that k divides A062970(k). - Jianing Song, Feb 03 2019

Examples

			6 is a term because 1^1 + 2^2 + 3^3 + 4^4 + 5^5 + 6^6 = 50069 and 50069 + 1 = 6 * 8345. - _Bernard Schott_, Feb 03 2019
		

Crossrefs

Cf. A128981 (sum == 0 (mod n)), A188776 (sum == 1 (mod n)).
Cf. A057245.

Programs

  • Maple
    isA188775 := proc(n) add( modp(k &^ k,n),k=1..n) ; if modp(%,n) = n-1 then true; else false; end if; end proc:
    for n from 1 do if isA188775(n) then printf("%d\n",n) ; end if; end do: # R. J. Mathar, Apr 10 2011
  • Mathematica
    Union@Table[If[Mod[Sum[PowerMod[i,i,n],{i,1,n}],n]==n-1,Print[n];n],{n,1,10000}]
  • PARI
    f(n)=lift(sum(k=1,n,Mod(k,n)^k));
    for(n=1,10^6,if(f(n)==n-1,print1(n,", "))) \\ Joerg Arndt, Apr 10 2011
    
  • PARI
    m=0;for(n=1,1000,m=m+n^n;if((m+1)%n==0,print1(n,", "))) \\ Jinyuan Wang, Feb 04 2019
    
  • Python
    sum = 0
    for n in range(10000):
        sum += n**n
        if sum % (n+1) == 0:
            print(n+1, end=',')
    # Alex Ratushnyak, May 13 2013

Extensions

a(12)-a(16) from Joerg Arndt, Apr 10 2011
a(17)-a(20) from Lars Blomberg, May 10 2011

A188776 Numbers n such that Sum_{k=1..n} k^k == 1 (mod n).

Original entry on oeis.org

1, 2, 9, 30, 6871, 185779, 208541, 813162, 864355, 2573155
Offset: 1

Views

Author

Keywords

Comments

Numbers n such that A001923(n) == 1 (mod n).
a(11) > 10^7. - Hiroaki Yamanouchi, Aug 25 2015

Crossrefs

Cf. A001923, A128981 (sum == 0 mod n), A188775 (sum == -1 mod n).

Programs

  • Mathematica
    Union@Table[If[Mod[Sum[PowerMod[i,i,n],{i,1,n}],n]==1,Print[n];n],{n,1,20000}]
  • PARI
    f(n)=lift(sum(k=1, n, Mod(k, n)^k));
    for(n=1, 10^6, if(f(n)==1, print1(n, ", "))) /* Joerg Arndt, Apr 10 2011 */
    
  • Python
    from itertools import accumulate, count, islice
    def A188776_gen(): # generator of terms
        yield 1
        for i, j in enumerate(accumulate(k**k for k in count(2)),start=2):
            if not j % i:
                yield i
    A188776_list = list(islice(A188776_gen(),5)) # Chai Wah Wu, Jun 18 2022

Extensions

a(6)-a(9) from Lars Blomberg, May 10 2011
a(1) inserted and a(10) added by Hiroaki Yamanouchi, Aug 25 2015

A342449 a(n) = Sum_{k=1..n} gcd(k,n)^k.

Original entry on oeis.org

1, 5, 29, 262, 3129, 46705, 823549, 16777544, 387421251, 10000003469, 285311670621, 8916100581446, 302875106592265, 11112006826387025, 437893890391180013, 18446744073743123788, 827240261886336764193, 39346408075299116257065
Offset: 1

Views

Author

Seiichi Manyama, Mar 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[GCD[k, n]^k, {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Mar 13 2021 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^k);

Formula

If p is prime, a(p) = p-1 + p^p = A231712(p).

A344430 a(n) = Sum_{k=1..n} mu(k) * k^k.

Original entry on oeis.org

1, -3, -30, -30, -3155, 43501, -780042, -780042, -780042, 9999219958, -275312450653, -275312450653, -303150419042906, 10808856406515110, 448702746787374485, 448702746787374485, -826791559139549389692, -826791559139549389692
Offset: 1

Views

Author

Seiichi Manyama, May 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[MoebiusMu[k] * k^k, {k,1,n}]; Array[a, 20] (* Amiram Eldar, May 19 2021 *)
    Accumulate[Table[MoebiusMu[n]n^n,{n,20}]] (* Harvey P. Dale, Jan 25 2022 *)
  • PARI
    a(n) = sum(k=1, n, moebius(k)*k^k);
    
  • Python
    from sympy import mobius
    def A344430(n): return sum(mobius(k)*k**k for k in range(1,n+1)) # Chai Wah Wu, Apr 05 2023

A074209 a(n) = Sum_{i=n+1..2n} i^n.

Original entry on oeis.org

2, 25, 405, 8418, 216400, 6668779, 240361121, 9936764996, 463893277176, 24148657338925, 1387253043076813, 87185783860333910, 5951020164442347800, 438417132703015536399, 34673851743509883542625
Offset: 1

Views

Author

Zak Seidov, Sep 22 2002

Keywords

Comments

A rapidly growing sequence. An even more rapidly growing sequence, the sum of next n terms of the form i^i, is given in A074309. Sum of first n terms of the form i^n is A031971. Sum of first n terms of the form i^i is A001923.

Examples

			a(2) = 25 = 3^2 + 4^2, a(3) = 405 = 4^3 + 5^3 + 6^3, a(4) = 8418 = 5^4 + 6^4 + 7^4 + 8^4, a(5) = 216400 = 6^4 + 7^5 + 8^5 + 9^5 + 10^5.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[i^n, {i, n+1, 2n}], {n, 20}]
  • PARI
    a(n) = sum(k=n+1, 2*n, k^n); \\ Seiichi Manyama, Dec 05 2021

Formula

From Wesley Ivan Hurt, Jan 28 2021: (Start)
a(n) = Sum_{k=1..n} (n+k)^n.
a(n) = Zeta(-n,n+1) - Zeta(-n,2*n+1), where Zeta is the Hurwitz zeta function. (End)
a(n) ~ (2*n)^n / (1 - exp(-1/2)). - Vaclav Kotesovec, Dec 06 2021

Extensions

Name changed by Wesley Ivan Hurt, Jan 28 2021

A122166 Numbers n such that 1 + Sum k^k (k=1..n) is prime.

Original entry on oeis.org

1, 52, 124, 431
Offset: 1

Views

Author

Alexander Adamchuk, Aug 23 2006

Keywords

Comments

Primes of the form A001923[n] = Sum k^k (k=1..n) are given in A073826[n] and their indices are given in A073825[n] = {2,5,6,10,30,...}.

Crossrefs

Programs

  • Mathematica
    s=1; Do[s=s+k^k;If[PrimeQ[s],Print[{k,s}]],{k,1,500}]

A304037 If n = Product (p_j^k_j) then a(n) = Sum (pi(p_j)^k_j), where pi() = A000720.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 4, 1, 4, 4, 5, 3, 6, 5, 5, 1, 7, 5, 8, 4, 6, 6, 9, 3, 9, 7, 8, 5, 10, 6, 11, 1, 7, 8, 7, 5, 12, 9, 8, 4, 13, 7, 14, 6, 7, 10, 15, 3, 16, 10, 9, 7, 16, 9, 8, 5, 10, 11, 17, 6, 18, 12, 8, 1, 9, 8, 19, 8, 11, 8, 20, 5, 21, 13, 11, 9, 9, 9, 22, 4, 16, 14, 23, 7, 10, 15, 12, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, May 05 2018

Keywords

Examples

			a(72) = 5 because 72 = 2^3*3^2 = prime(1)^3*prime(2)^2 and 1^3 + 2^2 = 5.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Plus @@ (PrimePi[#[[1]]]^#[[2]]& /@ FactorInteger[n]); a[1] = 0; Table[a[n], {n, 1, 88}]

Formula

If gcd(u,v) = 1 then a(u*v) = a(u) + a(v).
a(p^k) = A000720(p)^k where p is a prime.
a(A002110(m)^k) = 1^k + 2^k + ... + m^k.
As an example:
a(A000040(k)) = k.
a(A006450(k)) = A000040(k).
a(A038580(k)) = A006450(k).
a(A001248(k)) = a(A011757(k)) = A000290(k).
a(A030078(k)) = a(A055875(k)) = A000578(k).
a(A002110(k)) = a(A011756(k)) = A000217(k).
a(A061742(k)) = A000330(k).
a(A115964(k)) = A000537(k).
a(A080696(k)) = A007504(k).
a(A076954(k)) = A001923(k).

A345176 a(n) = Sum_{k=1..n} floor(n/k)^k.

Original entry on oeis.org

1, 3, 5, 10, 12, 26, 28, 52, 73, 115, 117, 295, 297, 439, 713, 1160, 1162, 2448, 2450, 4644, 6832, 8902, 8904, 23536, 25639, 33857, 53247, 84961, 84963, 192237, 192239, 318477, 493909, 625015, 695789, 1761668, 1761670, 2285996, 3872598, 6255230, 6255232, 13392362
Offset: 1

Views

Author

Seiichi Manyama, Jun 10 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Floor[n/k]^k, {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Jun 10 2021 *)
  • PARI
    a(n) = sum(k=1, n, (n\k)^k);
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(j=1, N, (1-x^j)*sum(k=1, N, (k*x^k)^j))/(1-x))

Formula

G.f.: (1/(1 - x)) * Sum_{j>=1} Sum_{k>=1} (k*x^k)^j * (1 - x^j).
a(n) ~ 3^((n - mod(n,3))/3 + 1)/2. - Vaclav Kotesovec, Jun 11 2021

A074309 Sum of next n terms of the form i^i.

Original entry on oeis.org

4, 283, 50037, 17650540, 10405067904, 9211817140115, 11424093748466841, 18896062057822100616, 40192544399240309019728, 106876212200059543898143707, 347377340594805599176614321101
Offset: 1

Views

Author

Zak Seidov, Sep 22 2002

Keywords

Comments

Sum of next n terms of the form i^n is A074209. Sum of first n terms of the form i^n is A031971. Sum of first n terms of the form i^i is A001923.

Examples

			a(2) = 283 = 3^3 + 4^4, a(3) = 50037 = 4^4 + 5^5 + 6^6, a(4) = 17650540 = 5^5 + 6^6 + 7^7 + 8^8, a(5) = 10405067904 = 6^6 + 7^7 + 8^8 + 9^9 + 10^10.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[i^i, {i, n+1, 2n}], {n, 20}]
  • PARI
    a(n) = sum(k=n+1, 2*n, k^k); \\ Seiichi Manyama, Dec 05 2021

Formula

a(n) = Sum_{i=n+1..2n} i^i.
a(n) ~ (2*n)^(2*n). - Vaclav Kotesovec, Dec 06 2021

A117667 a(n) = n^n-n^(n-1)-n^(n-2)-n^(n-3)-...-n^3-n^2-n.

Original entry on oeis.org

1, 2, 15, 172, 2345, 37326, 686287, 14380472, 338992929, 8888888890, 256780503551, 8105545862052, 277635514376233, 10257237069745862, 406615755353655135, 17216961135462248176, 775537745518440716417
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), Apr 11 2006

Keywords

Examples

			a(3) = 3^3-3^2-3 = 27-9-3 = 15.
		

Crossrefs

Cf. A000312 (n^n), A023037 (1+n+n^2+...n^(n-1)),

Programs

  • Maple
    a:=n->n^n-sum(n^j,j=1..n-1): seq(a(n),n=1..19); # Emeric Deutsch, Apr 16 2006
  • Mathematica
    s[n_] := Sum[n^i, {i, 1, n - 1}]; Table[n^n - s[n], {n, 17}] (* Carlos Eduardo Olivieri, Apr 14 2015 *)
    f[n_] := ((n - 2) n^n + n)/(n - 1); f[1] = 1; Array[f, 18] (* Robert G. Wilson v, Apr 15 2015 *)

Formula

a(n) = A000312(n) - A023037(n) + 1. - Michel Marcus, Apr 14 2015
A191690(n)+1. - Robert G. Wilson v, Apr 16 2015
Previous Showing 11-20 of 34 results. Next