cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 68 results. Next

A328546 Number of 12-regular partitions of n (no part is a multiple of 12).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 76, 100, 133, 173, 226, 290, 374, 475, 605, 762, 960, 1199, 1497, 1856, 2299, 2831, 3482, 4261, 5208, 6337, 7700, 9321, 11266, 13572, 16325, 19578, 23444, 27999, 33389, 39721, 47185, 55929, 66199, 78199, 92246
Offset: 0

Views

Author

N. J. A. Sloane, Oct 19 2019

Keywords

References

  • Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.

Crossrefs

Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.

Programs

  • Maple
    f:=(k,M) -> mul(1-q^(k*j),j=1..M);
    LRP := (L,M) -> f(L,M)/f(1,M);
    s := L -> seriestolist(series(LRP(L,80),q,60));
    s(12);
  • Mathematica
    Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 12], 0, 2] ], {n, 0, 46}] (* Robert Price, Jul 28 2020 *)

Formula

a(n) ~ exp(Pi*sqrt(2*n*(s-1)/(3*s))) * (s-1)^(1/4) / (2 * 6^(1/4) * s^(3/4) * n^(3/4)) * (1 + ((s-1)^(3/2)*Pi/(24*sqrt(6*s)) - 3*sqrt(6*s) / (16*Pi * sqrt(s-1))) / sqrt(n) + ((s-1)^3*Pi^2/(6912*s) - 45*s/(256*(s-1)*Pi^2) - 5*(s-1)/128) / n), set s=12. - Vaclav Kotesovec, Aug 01 2022

A092877 Expansion of (eta(q^4) / eta(q))^8 in powers of q.

Original entry on oeis.org

1, 8, 44, 192, 718, 2400, 7352, 20992, 56549, 145008, 356388, 844032, 1934534, 4306368, 9337704, 19771392, 40965362, 83207976, 165944732, 325393024, 628092832, 1194744096, 2241688744, 4152367104, 7599231223, 13749863984
Offset: 1

Views

Author

Michael Somos, Mar 19 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 8*q^2 + 44*q^3 + 192*q^4 + 718*q^5 + 2400*q^6 + 7352*q^7 + 20992*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ -InverseEllipticNomeQ[ -x] / 16, {x, 0, n}]]; (* Michael Somos, Jun 13 2011 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ With[ {lambda = ModularLambda[ Log[x] / ( Pi I)]}, lambda / (16 * (1 - lambda))], {x, 0, n}]]; (* Michael Somos, Jun 13 2011 *)
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^4] / QPochhammer[ q])^8, {q, 0, n}]; (* Michael Somos, Aug 09 2015 *)
    a[1] = 1; a[n_] := a[n] = (8/(n-1))*Sum[DivisorSum[k, Identity, Mod[#, 4] != 0&]*a[n-k], {k, 1, n-1}]; Array[a, 26] (* Jean-François Alcover, Mar 01 2018, after Seiichi Manyama *)
    eta[q_]:= q^(1/6) QPochhammer[q]; a[n_]:=SeriesCoefficient[(eta[q^4] / eta[q])^8, {q, 0, n}]; Table[a[n], {n, 4, 35}] (* Vincenzo Librandi, Oct 18 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( x * prod(k=1, (n+1)\2, (1 + x^(2*k)) / (1 - x^(2*k-1)), 1 + x * O(x^n))^8, n))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^4 + A) / eta(x + A))^8, n))};

Formula

Expansion of q * (psi(-q) / phi(-q))^8 = q * (psi(q^2) / psi(-q))^8 = q * (psi(q) / phi(-q^2))^8 = q * (psi(q^2) / phi(-q))^4 = q * (chi(q) / chi(-q^2)^2)^8 = q / (chi(-q) * chi(-q^2))^8 = q / (chi(q) * chi(-q)^2)^8 = q * (f(-q^4) / f(-q))^8 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Jun 13 2011
Euler transform of period 4 sequence [ 8, 8, 8, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - 16*u*v - 16*v^2 - 256*u*v^2.
G.f.: x * (Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k - 1)))^8.
G.f.: theta_2^4 / (16*theta_4^4) = lambda / (16 * (1 - lambda)).
G.f.: exp( Integral theta_3(x)^4/x dx ). - Paul D. Hanna, May 03 2010
a(n) = (-1)^n * A005798(n).
a(2*n) = 8 * A014103(n). - Michael Somos, Aug 09 2015
Convolution inverse of A124972, 8th power of A001935, 4th power of A001936, square of A093160. - Michael Somos, Aug 09 2015
a(n) ~ exp(2*Pi*sqrt(n))/(512*n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
a(1) = 1, a(n) = (8/(n-1))*Sum_{k=1..n-1} A046897(k)*a(n-k) for n > 1. - Seiichi Manyama, Apr 01 2017

A296044 a(n) = [x^n] Product_{k>=1} ((1 + x^(2*k))/(1 - x^(2*k-1)))^n.

Original entry on oeis.org

1, 1, 5, 22, 101, 481, 2330, 11425, 56549, 281911, 1413465, 7120136, 36006362, 182681916, 929461993, 4740491107, 24229115109, 124069449335, 636376573943, 3268955179686, 16814509004601, 86593280920756, 446437797872016, 2303948443259841, 11900990745759578, 61526182236027756
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^(2 k))/(1 - x^(2 k - 1)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[Product[((1 - x^(4 k))/(1 - x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[(EllipticTheta[2, 0, x]/EllipticTheta[2, Pi/4, x^(1/2)]/(16 x)^(1/8))^n, {x, 0, n}], {n, 0, 25}]
    (* Calculation of constant d: *) With[{k = 4}, 1/r /. FindRoot[{s == QPochhammer[(r*s)^k] / QPochhammer[r*s], k*(-(s*QPochhammer[r*s]*(Log[1 - (r*s)^k] + QPolyGamma[0, 1, (r*s)^k]) / Log[(r*s)^k]) + (r*s)^k * Derivative[0, 1][QPochhammer][(r*s)^k, (r*s)^k]) == s*QPochhammer[r*s] + s^2*(-(QPochhammer[r*s]*(Log[1 - r*s] + QPolyGamma[0, 1, r*s]) / (s*Log[r*s])) + r*Derivative[0, 1][QPochhammer][r*s, r*s])}, {r, 1/5}, {s, 1}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)

Formula

a(n) = [x^n] Product_{k>=1} ((1 - x^(4*k))/(1 - x^k))^n.
a(n) ~ c * d^n / sqrt(n), where d = 5.2749356339591798618290252741994029798069148326559... and c = 0.2726256757090475625917361066565981461455343437... - Vaclav Kotesovec, Dec 05 2017

A286653 Square array A(n,k), n>=0, k>=1, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - x^(k*j))/(1 - x^j).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 2, 2, 2, 0, 1, 1, 2, 3, 4, 3, 0, 1, 1, 2, 3, 4, 5, 4, 0, 1, 1, 2, 3, 5, 6, 7, 5, 0, 1, 1, 2, 3, 5, 6, 9, 9, 6, 0, 1, 1, 2, 3, 5, 7, 10, 12, 13, 8, 0, 1, 1, 2, 3, 5, 7, 10, 13, 16, 16, 10, 0, 1, 1, 2, 3, 5, 7, 11, 14, 19, 22, 22, 12, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, May 11 2017

Keywords

Comments

A(n,k) is the number of partitions of n in which no parts are multiples of k.
A(n,k) is also the number of partitions of n into at most k-1 copies of each part.

Examples

			Square array begins:
  1,  1,  1,  1,  1,  1,  ...
  0,  1,  1,  1,  1,  1,  ...
  0,  1,  2,  2,  2,  2,  ...
  0,  2,  2,  3,  3,  3,  ...
  0,  2,  4,  4,  5,  5,  ...
  0,  3,  5,  6,  6,  7,  ...
		

Crossrefs

Main diagonal gives A000041.
Mirror of A061198.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(k*i*(i+1)/2[0, l[1]*j]+l)(b(n-i*j, i-1, k)), j=0..min(n/i, k))))
        end:
    A:= (n, k)-> b(n$2, k-1)[1]:
    seq(seq(A(n, 1+d-n), n=0..d), d=0..16);  # Alois P. Heinz, Oct 17 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 - x^(i k))/(1 - x^i), {i, Infinity}], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[QPochhammer[x^k, x^k]/QPochhammer[x, x], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} (1 - x^(k*j))/(1 - x^j).

A001937 Expansion of (psi(x^2) / psi(-x))^3 in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 3, 9, 22, 48, 99, 194, 363, 657, 1155, 1977, 3312, 5443, 8787, 13968, 21894, 33873, 51795, 78345, 117312, 174033, 255945, 373353, 540486, 776848, 1109040, 1573209, 2218198, 3109713, 4335840, 6014123, 8300811, 11402928, 15593702, 21232521, 28790667, 38884082
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The Cayley reference is actually to A187053. - Michael Somos, Jul 26 2012

Examples

			1 + 3*x + 9*x^2 + 22*x^3 + 48*x^4 + 99*x^5 + 194*x^6 + 363*x^7 + 657*x^8 + ...
q^3 + 3*q^11 + 9*q^19 + 22*q^27 + 48*q^35 + 99*q^43 + 194*q^51 + 363*q^59 + ...
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    g100:= mul((1+x^(2*k))/(1-x^(2*k-1)),k=1..50)^3:
    S:= series(g100,x,101):
    seq(coeff(S,x,j),j=0..100); # Robert Israel, Nov 30 2015
  • Mathematica
    CoefficientList[ Series[Product[(1 - x^k)^(-3*Boole[Mod[k, 4] != 0]), {k, 1, 101}], {x, 0, 100}], x] (* Olivier GERARD, May 06 2009 *)
    QP = QPochhammer; s = (QP[q^4]/QP[q])^3 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A) / eta(x + A))^3, n))} /* Michael Somos, Mar 06 2011 */

Formula

Expansion of q^(-3/8) * (eta(q^4) / eta(q))^3 in powers of q. - Michael Somos, Jul 26 2012
Euler transform of period 4 sequence [ 3, 3, 3, 0, ...]. - Michael Somos, Mar 06 2011
Convolution cube of A001935. A187053(n) = (-1)^n * a(n). - Michael Somos, Mar 06 2011
G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k-1)))^3.
a(n) ~ 3^(1/4) * exp(sqrt(3*n/2)*Pi) / (16*2^(3/4)*n^(3/4)). - Vaclav Kotesovec, Nov 15 2017

Extensions

Corrected and extended by Simon Plouffe
Checked and more terms from Olivier GERARD, May 06 2009

A066447 Number of basis partitions (or basic partitions) of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 6, 8, 10, 13, 16, 20, 26, 32, 40, 50, 61, 74, 90, 108, 130, 156, 186, 222, 264, 313, 370, 436, 512, 600, 702, 818, 952, 1106, 1282, 1484, 1715, 1978, 2278, 2620, 3008, 3448, 3948, 4512, 5150, 5872, 6684, 7600, 8632, 9791, 11094, 12558, 14198, 16036, 18096, 20398
Offset: 0

Views

Author

Herbert S. Wilf, Dec 29 2001

Keywords

Comments

The k-th successive rank of a partition pi = (pi_1, pi_2, ..., pi_s) of the integer n is r_k = pi_k - pi'_k, where pi' denotes the conjugate partition. A partition pi is basic if the number of dots in its Ferrers diagram is the least among all the Ferrers diagrams of partitions with the same rank vector.
The g.f. Sum_{n >= 0} x^(n^2) * Product_{k = 1..n} (1 + x^k)/(1 - x^k) = Sum_{n >= 0} x^(n^2) * Product_{k = 1..n} (1 + x^k)/(1 + x^k - 2*x^k) == Sum_{n >= 0} x^(n^2) (mod 2). It follows that a(n) is odd iff n is a square (Nolan et al., equation 6, p. 282). - Peter Bala, Jan 08 2025

Crossrefs

Programs

  • Maple
    b := proc(n,d); option remember; if n=0 and d=0 then RETURN(1) elif n<=0 or d<=0 then RETURN(0) else RETURN(b(n-d,d)+b(n-2*d+1,d-1)+b(n-3*d+1,d-1)) fi: end: A066447 := n->add(b(n,d),d=0..n);
  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(n^2)*Product[(1 + x^k)/(1 - x^k), {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 17 2020 *)
    nmax = 60; p = 1; s = 1; Do[p = Normal[Series[p*(1 + x^k)/(1 - x^k)*x^(2*k - 1), {x, 0, nmax}]]; s += p;, {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Mar 17 2020 *)
  • PARI
    N=66; x='x+O('x^N); s=sum(n=0,N,x^(n^2)*prod(k=1,n,(1+x^k)/(1-x^k))); Vec(s) /* Joerg Arndt, Apr 07 2011 */

Formula

G.f.: Sum_{n >= 0} x^(n^2) * Product_{k = 1..n} (1 + x^k)/(1 - x^k) [Given in Nolan et al. reference]. - Joerg Arndt, Apr 07 2011
Limit_{n->infinity} a(n) / A333374(n) = A058265 = (1 + (19+3*sqrt(33))^(1/3) + (19-3*sqrt(33))^(1/3))/3 = 1.839286755214... - Vaclav Kotesovec, Mar 17 2020
a(n) ~ c * d^sqrt(n) / n^(3/4), where d = A376841 = 7.1578741786143524880205... = exp(2*sqrt(log(r)^2 - polylog(2, -r^2) + polylog(2, r^2))) and c = 0.193340468476900308848561788251945... = (log(r)^2 - polylog(2, -r^2) + polylog(2, r^2))^(1/4) * sqrt(1/24 + cosh(arccosh(53*sqrt(11/2)/64)/3) / (3*sqrt(22))) / sqrt(Pi), where r = A192918 = 0.54368901269207636157... is the real root of the equation r^2*(1+r) = 1-r. - Vaclav Kotesovec, Mar 19 2020, updated Oct 10 2024

A264905 Expansion of Product_{k>=1} (1 + x^k + x^(3*k)).

Original entry on oeis.org

1, 1, 1, 3, 2, 4, 6, 7, 8, 13, 16, 18, 26, 29, 38, 49, 58, 68, 90, 101, 125, 156, 181, 214, 263, 304, 358, 435, 505, 589, 701, 812, 939, 1115, 1275, 1485, 1736, 1991, 2286, 2667, 3038, 3489, 4028, 4588, 5240, 6036, 6833, 7787, 8904, 10078, 11429, 13020, 14698
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1+x^k+x^(3*k), {k,1,nmax}], {x,0,nmax}], x]
    nmax = 100; p = ConstantArray[0, nmax + 1]; p[[1]] = 1; p[[2]] = 1; p[[4]] = 1; Do[Do[p[[j+1]] = p[[j+1]] + p[[j - k + 1]] + If[j < 3*k, 0, p[[j - 3*k + 1]]], {j, nmax, k, -1}];, {k, 2, nmax}]; p (* Vaclav Kotesovec, May 10 2018 *)

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(3*Pi)*n^(3/4)), where c = Integral_{0..infinity} log(1 + exp(-x) + exp(-3*x)) dx = 0.9953865985263189816963357718655148864441174218433250148867... . - Vaclav Kotesovec, Jan 05 2016

A022568 Expansion of Product_{m>=1} (1+x^m)^3.

Original entry on oeis.org

1, 3, 6, 13, 24, 42, 73, 120, 192, 302, 465, 702, 1046, 1536, 2226, 3195, 4536, 6378, 8896, 12306, 16896, 23045, 31224, 42048, 56310, 75000, 99384, 131072, 172071, 224910, 292774, 379608, 490338, 631104, 809472, 1034814, 1318707, 1675344, 2122176, 2680602, 3376728, 4242432, 5316562, 6646272
Offset: 0

Views

Author

Keywords

Comments

The g.f. Product_{m >= 1} (1 + x^m)^3 = Product_{m >= 1} (1 - x^m + 2*x^m)^3 == Product_{m >= 1} (1 - x^m)^3 == Sum_{m >= 0} (-1)^m*(2*m + 1)*q^(m*(m+1)/2) (mod 2) by an identity of Jacobi. It follows that a(n) is odd iff n = m*(m + 1)/2 for some nonnegative integer m. - Peter Bala, Jan 07 2025

Crossrefs

Column k=3 of A286335.

Programs

  • Magma
    Coefficients(&*[(1+x^m)^3:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 26 2018
  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+q^m)^3,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
    nmax = 50; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 3; poly[[3]] = 3; poly[[4]] = 1; Do[Do[Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}];, {p, 1, 3}], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Mar 31 2018 *)
  • PARI
    x='x+O('x^51); Vec(prod(m=1, 50, (1 + x^m)^3)) \\ Indranil Ghosh, Apr 03 2017
    

Formula

a(n) ~ exp(Pi * sqrt(n)) / (8 * n^(3/4)) * (1 + (Pi/16 - 3/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Mar 05 2015, extended Jan 16 2017
a(0) = 1, a(n) = (3/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
G.f.: exp(3*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018
G.f.: Sum_{n >= 0} q^(n*(n+1)/2) / Sum_{n in Z} (-1)^n * q^(n^2). - Peter Bala, Jan 07 2025

A061199 Upper right triangle read by columns where T(n,k), with k >= n, is the number of partitions of k where no part appears more than n times; also partitions of k where no parts are multiples of (n+1).

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 2, 3, 0, 2, 4, 4, 5, 0, 3, 5, 6, 6, 7, 0, 4, 7, 9, 10, 10, 11, 0, 5, 9, 12, 13, 14, 14, 15, 0, 6, 13, 16, 19, 20, 21, 21, 22, 0, 8, 16, 22, 25, 27, 28, 29, 29, 30, 0, 10, 22, 29, 34, 37, 39, 40, 41, 41, 42, 0, 12, 27, 38, 44, 49, 51, 53, 54, 55, 55, 56, 0, 15, 36
Offset: 0

Views

Author

Henry Bottomley, Apr 20 2001

Keywords

Examples

			T(2,4) = 4 since the possible partitions of 4 are on the first definition (no term more than twice) 1+1+2, 2+2, 1+3, or 4 and on the second definition (no term a multiple of 3) 1+1+1+1, 1+1+2, 2+2, or 4.
Triangle T(n,k) begins:
1, 0, 0, 0, 0, 0,  0,  0,  0,  0, ...
   1, 1, 2, 2, 3,  4,  5,  6,  8, ...
      2, 2, 4, 5,  7,  9, 13, 16, ...
         3, 4, 6,  9, 12, 16, 22, ...
            5, 6, 10, 13, 19, 25, ...
               7, 10, 14, 20, 27, ...
                  11, 14, 21, 28, ...
                      15, 21, 29, ...
                          22, 29, ...
                              30, ...
		

Crossrefs

Rows effectively include A000007, A000009, A000726, A001935, A035959.
Main diagonal is A000041.
A061198 is the same table but includes cases where n>k.
T(n,2*n) gives: A232623.

Programs

  • Maple
    b:= proc(n, i, k) option remember;
          `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k), j=0..min(n/i, k))))
        end:
    T:= (n, k)-> b(k$2, n):
    seq(seq(T(n, k), n=0..k), k=0..12);  # Alois P. Heinz, Nov 27 2013
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1, k], {j, 0, Min[n/i, k]}]]]; T[n_, k_] := b[k, k, n]; Table[Table[T[n, k], {n, 0, k}], {k, 0, 12}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)

A246584 Number of overcubic partitions of n.

Original entry on oeis.org

1, 2, 6, 12, 26, 48, 92, 160, 282, 470, 784, 1260, 2020, 3152, 4896, 7456, 11290, 16836, 24962, 36556, 53232, 76736, 110012, 156384, 221156, 310482, 433776, 602200, 832224, 1143696, 1565088, 2131072, 2890266, 3902344, 5249356, 7032576, 9389022, 12488368
Offset: 0

Views

Author

N. J. A. Sloane, Sep 03 2014

Keywords

Comments

Convolution of A001935 and A002513. - Vaclav Kotesovec, Aug 16 2019

Crossrefs

Trisections: A246585, A246586, A246587.

Programs

  • Maple
    # to get 140 terms:
    ph:=add(q^(n^2),n=-12..12);
    ph:=series(ph,q,140);
    g1:=1/(subs(q=-q,ph)*subs(q=-q^2,ph));
    g1:=series(g1,q,140);
    seriestolist(%);
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(d*
          `if`(irem(d, 4)=2, 3, 2), d=divisors(j)), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Aug 17 2019
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) / ((1-x^k) * (1-x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 16 2019 *)
    nmax = 50; CoefficientList[Series[Product[(1+x^(2*k)) / (1-x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 16 2019 *)

Formula

G.f.: Product_{k>=1} (1+x^k) * (1+x^(2*k)) / ((1-x^k) * (1-x^(2*k))). - Vaclav Kotesovec, Aug 16 2019
a(n) ~ 3^(3/4) * exp(sqrt(3*n/2)*Pi) / (2^(19/4)*n^(5/4)). - Vaclav Kotesovec, Aug 16 2019
Previous Showing 21-30 of 68 results. Next