cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 46 results. Next

A055841 Number of compositions of n into 3*j-1 kinds of j's for all j >= 1.

Original entry on oeis.org

1, 2, 9, 36, 144, 576, 2304, 9216, 36864, 147456, 589824, 2359296, 9437184, 37748736, 150994944, 603979776, 2415919104, 9663676416, 38654705664, 154618822656, 618475290624, 2473901162496, 9895604649984, 39582418599936, 158329674399744, 633318697598976, 2533274790395904, 10133099161583616, 40532396646334464, 162129586585337856, 648518346341351424
Offset: 0

Views

Author

Barry E. Williams, May 30 2000

Keywords

Comments

First differences of A002001.
For n >= 2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3,4} we have f(x_1) <> y_1 and f(x_2) <> y_2. - Milan Janjic, Apr 19 2007
Convolved with [1, 2, 3, ...] = powers of 4: [1, 4, 16, 64, ...]. - Gary W. Adamson, Jun 04 2009
a(n) is the number of generalized compositions of n when there are 3 *i-1 different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A000302 and A002001.
Essentially the same as A002063.

Programs

Formula

a(n) = 9*4^(n-2), a(0)=1, a(1)=2.
a(0)=1, a(1)=2, a(3)=9, a(n+1)=4*a(n) for n >= 3.
G.f.: (1-x)^2/(1-4*x).
G.f.: 1/(1 - Sum_{j>=1} (3*j-1)*x^j). - Joerg Arndt, Jul 06 2011
a(n) = 4*a(n-1) + (-1)^n*C(2,2-n).
a(n) = Sum_{k=0..n} A201780(n,k)*2^k. - Philippe Deléham, Dec 05 2011

Extensions

New name from Joerg Arndt, Jul 06 2011

A094554 Number of closed walks of length n at a base vertex of a truncated tetrahedron (triangular prism).

Original entry on oeis.org

1, 0, 3, 2, 19, 30, 143, 322, 1179, 3110, 10183, 28842, 89939, 262990, 802623, 2380562, 7196299, 21479670, 64657463, 193535482, 581480259, 1742693150, 5231574703, 15687733602, 47077181819, 141203583430, 423666674343
Offset: 0

Views

Author

Paul Barry, May 11 2004

Keywords

Comments

For n > 0, 6*a(n) is the number of 3-colorings of the prism of size 2 X n (i.e., C_2 X C_n).More generally, the number of k-colorings of the prism of size 2 X n is given by (k^2 - 3*k + 3)^n + (k - 1) * ((3 - k)^n + (1 - k)^n) + k^2 - 3*k + 1 (chromatic polynomial). - Sela Fried, Oct 07 2023

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 5, -6}, {1, 0, 3, 2}, 30] (* Greg Dresden, Jun 19 2021 *)
  • PARI
    a(n) = if(n==0, 1, (1 + 3^n + 2*(-2)^n)/6) \\ Andrew Howroyd, Jun 14 2021

Formula

G.f.: (1 - 2*x - 2*x^2 + 2*x^3)/((1 - x)*(1 + 2*x)*(1 - 3*x)).
a(n) = 1/6 + 3^n/6 + (-2)^n/3 for n > 0.
a(n) = 2*a(n-1) + 5*a(n-2) - 6*a(n-3) for n >= 4.
E.g.f.: exp(-2*x)*(1 + exp(2*x))*(2 + exp(3*x))/6. - Stefano Spezia, Sep 26 2023

A256258 Triangle read by rows in which the row lengths are the terms of A011782 and row n lists the terms of A016969 except for the right border which gives the positive terms of A000225.

Original entry on oeis.org

1, 3, 5, 7, 5, 11, 17, 15, 5, 11, 17, 23, 29, 35, 41, 31, 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 63, 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, 167, 173, 179, 185, 127, 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, 107, 113, 119, 125, 131, 137
Offset: 1

Views

Author

Omar E. Pol, Apr 04 2015

Keywords

Comments

Row sums give A002001.
The sum of all terms of first n rows gives A000302(n-1).
The rows of triangle A256263 converge to this sequence.
Rows converge to A016969.
First 11 terms agree with A151548.

Examples

			Written as an irregular triangle in which the row lengths are the terms of A011782, the sequence begins:
1;
3;
5,7;
5,11,17,15;
5,11,17,23,29,35,41,31;
5,11,17,23,29,35,41,47,53,59,65,71,77,83,89,63;
5,11,17,23,29,35,41,47,53,59,65,71,77,83,89,95,101,107,113,119,125,131,137,143,149,155,161,167,173,179,185,127;
...
Illustration of initial terms in the fourth quadrant of the square grid:
------------------------------------------------------------------------
n   a(n)             Compact diagram
------------------------------------------------------------------------
.            _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1    1      |_| | | |_ _  | |_ _ _ _ _ _  | |
2    3      |_ _| | |_  | | |_ _ _ _ _  | | |
3    5      |_ _ _| | | | | |_ _ _ _  | | | |
4    7      |_ _ _ _| | | | |_ _ _  | | | | |
5    5      | | |_ _ _| | | |_ _  | | | | | |
6   11      | |_ _ _ _ _| | |_  | | | | | | |
7   17      |_ _ _ _ _ _ _| | | | | | | | | |
8   15      |_ _ _ _ _ _ _ _| | | | | | | | |
9    5      | | | | | | |_ _ _| | | | | | | |
10  11      | | | | | |_ _ _ _ _| | | | | | |
11  17      | | | | |_ _ _ _ _ _ _| | | | | |
12  23      | | | |_ _ _ _ _ _ _ _ _| | | | |
13  29      | | |_ _ _ _ _ _ _ _ _ _ _| | | |
14  35      | |_ _ _ _ _ _ _ _ _ _ _ _ _| | |
15  41      |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
16  31      |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
a(n) is also the number of cells in the n-th region of the diagram.
It appears that A241717 can be represented by a similar diagram.
		

Crossrefs

Programs

  • Mathematica
    Nest[Join[#, Range[Length[#] - 1]*6 - 1, {2 #[[-1]] + 1}] &, {1}, 7] (* Ivan Neretin, Feb 14 2017 *)

A134683 Expansion of 1+x*(2+3*x)/(1-4*x^2).

Original entry on oeis.org

1, 2, 3, 8, 12, 32, 48, 128, 192, 512, 768, 2048, 3072, 8192, 12288, 32768, 49152, 131072, 196608, 524288, 786432, 2097152, 3145728, 8388608, 12582912, 33554432, 50331648, 134217728, 201326592, 536870912, 805306368, 2147483648, 3221225472
Offset: 0

Views

Author

Paul Curtz, Jan 26 2008, Feb 09 2008

Keywords

Comments

A002001 interleaved with A081294. Gary W. Adamson, Jul 08 2012

Crossrefs

Programs

  • Maple
    A134683 := proc(n)
        if n =0 then
            1 ;
        else
            -(-1)^n*A131577(n-1)+2*procname(n-1) ;
        end if;
    end proc: # R. J. Mathar, Jul 22 2012
  • Mathematica
    CoefficientList[Series[1 + x*(2 + 3*x)/(1 - 4*x^2), {x, 0, 32}], x] (* Amiram Eldar, Aug 18 2022 *)

Formula

a(n) = 2*a(n-1)-(-1)^n*A131577(n-1), n>0.
a(n) = 4*a(n-2), n>2. Gary W. Adamson, Jul 08 2012
a(n) = 2^(n-3)*(7-(-1)^n), n>0. - R. J. Mathar, Jul 22 2012
Sum_{n>=0} 1/a(n) = 19/9. - Amiram Eldar, Aug 18 2022

Extensions

Edited by N. J. A. Sloane, Feb 20 2008

A193723 Mirror of the fusion triangle A193722.

Original entry on oeis.org

1, 2, 1, 6, 5, 1, 18, 21, 8, 1, 54, 81, 45, 11, 1, 162, 297, 216, 78, 14, 1, 486, 1053, 945, 450, 120, 17, 1, 1458, 3645, 3888, 2295, 810, 171, 20, 1, 4374, 12393, 15309, 10773, 4725, 1323, 231, 23, 1, 13122, 41553, 58320, 47628, 24948, 8694, 2016, 300, 26, 1
Offset: 0

Views

Author

Clark Kimberling, Aug 04 2011

Keywords

Comments

A193723 is obtained by reversing the rows of the triangle A193722.
Triangle T(n,k), read by rows, given by [2,1,0,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 04 2011
From Philippe Deléham, Nov 14 2011: (Start)
Riordan array ((1-x)/(1-3x), x/(1-3x)).
Product A200139*A007318 as infinite lower triangular arrays. (End)

Examples

			First six rows:
    1;
    2,   1;
    6,   5,   1;
   18,  21,   8,   1;
   54,  81,  45,  11,   1;
  162, 297, 216,  78,  14,   1;
		

Crossrefs

Cf. A084938, A193722, A052924 (antidiagonal sums), Diagonals: A000012, A016789, A081266, Columns: A025192, A081038.

Programs

  • Mathematica
    z = 9; a = 1; b = 1; c = 1; d = 2;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193722 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]] (* A193723 *)

Formula

Write w(n,k) for the triangle at A193722. The triangle at A193723 is then given by w(n,n-k).
T(n,k) = T(n-1,k-1) + 3*T(n-1,k) with T(0,0)=T(1,1)=1 and T(1,0)=2. - Philippe Deléham, Oct 05 2011
From Philippe Deléham, Nov 14 2011: (Start)
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A011782(n), A025192(n), A002001(n), A005054(n), A052934(n), A055272(n), A055274(n), A055275(n), A052268(n), A055276(n), A196731(n) for x=-2,-1,0,1,2,3,4,5,6,7,8,9 respectively.
T(n,k) = Sum_{j>=0} T(n-1-j,k-1)*3^j.
G.f.: (1-x)/(1-(3+y)*x). (End)

A196663 Expansion of g.f. (1-4*x)/(1-13*x).

Original entry on oeis.org

1, 9, 117, 1521, 19773, 257049, 3341637, 43441281, 564736653, 7341576489, 95440494357, 1240726426641, 16129443546333, 209682766102329, 2725875959330277, 35436387471293601, 460673037126816813, 5988749482648618569, 77853743274432041397, 1012098662567616538161
Offset: 0

Views

Author

Philippe Deléham, Oct 05 2011

Keywords

Crossrefs

Formula

a(0) = 1, a(n) = 9*13^(n-1) for n>0.
a(n) = Sum_{k=0..n} A193722(n,k)*4^k.
From Elmo R. Oliveira, Mar 18 2025: (Start)
E.g.f.: (9*exp(13*x) + 4)/13.
a(n) = 13*a(n-1). (End)

A085388 First differences of n^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 4, 0, 1, 4, 12, 18, 8, 0, 1, 5, 20, 48, 54, 16, 0, 1, 6, 30, 100, 192, 162, 32, 0, 1, 7, 42, 180, 500, 768, 486, 64, 0, 1, 8, 56, 294, 1080, 2500, 3072, 1458, 128, 0, 1, 9, 72, 448, 2058, 6480, 12500, 12288, 4374, 256, 0, 1, 10, 90, 648
Offset: 1

Views

Author

Paul Barry, Jun 30 2003

Keywords

Comments

T(n,k) is the number of k-digit numbers in base n; n,k >= 2. - Mohammed Yaseen, Nov 11 2022

Examples

			Rows begin
  1,   0,   0,   0,   0, ...
  1,   1,   2,   4,   8, ...
  1,   2,   6,  18,  54, ...
  1,   3,  12,  48, 192, ...
  1,   4,  20, 100, 500, ...
		

Crossrefs

Diagonals include A053506, A085389, A085390.
Row-wise binomial transform is A083064.

Formula

T(n,k) = (n-1)*n^(k-1) + 0^k/n. - Corrected by Mohammed Yaseen, Nov 11 2022
T(n,0) = 1; T(n,k) = n^k - n^(k-1) for k >= 1. - Mohammed Yaseen, Nov 11 2022

Extensions

Offset corrected by Mohammed Yaseen, Nov 11 2022

A098646 Trace sequence of 3 X 3 Krawtchouk matrix.

Original entry on oeis.org

3, 2, 12, 8, 48, 32, 192, 128, 768, 512, 3072, 2048, 12288, 8192, 49152, 32768, 196608, 131072, 786432, 524288, 3145728, 2097152, 12582912, 8388608, 50331648, 33554432, 201326592, 134217728, 805306368, 536870912, 3221225472, 2147483648
Offset: 0

Views

Author

Paul Barry, Sep 18 2004

Keywords

Comments

Let A=[1,1,1;2,0,-2;1,-1,1], the 3 X 3 Krawtchouk matrix. Then a(n)=trace(A^n).

Crossrefs

Programs

Formula

G.f.: (3+2*x)/((1+2*x)*(1-2*x)).
a(n) = (-2)^n+2*2^n.
Recurrence: a(n) = 4a(n-2), a(0)=3, a(1)=2. - Ralf Stephan, Jul 17 2013
a(2n+1)=A081294(n+1). a(2n)=A002001(n+1). - R. J. Mathar, Nov 11 2013

A330941 a(n) is the greatest value whose binary representation can be obtained by interleaving (or shuffling) two copies of the binary representation of n.

Original entry on oeis.org

0, 3, 12, 15, 48, 53, 60, 63, 192, 201, 212, 219, 240, 245, 252, 255, 768, 785, 804, 819, 848, 853, 876, 887, 960, 969, 980, 987, 1008, 1013, 1020, 1023, 3072, 3105, 3140, 3171, 3216, 3237, 3276, 3303, 3392, 3401, 3412, 3435, 3504, 3509, 3548, 3567, 3840, 3857
Offset: 0

Views

Author

Rémy Sigrist, Jan 04 2020

Keywords

Comments

The binary representation of all positive terms are square binary words (see A191755).

Examples

			The first terms, alongside the binary representations of n and of a(n), are:
  n   a(n)  bin(n)  bin(a(n))
  --  ----  ------  ----------
   0     0       0           0
   1     3       1          11
   2    12      10        1100
   3    15      11        1111
   4    48     100      110000
   5    53     101      110101
   6    60     110      111100
   7    63     111      111111
   8   192    1000    11000000
   9   201    1001    11001001
  10   212    1010    11010100
  11   219    1011    11011011
  12   240    1100    11110000
		

Crossrefs

See A330940 for the minimum variant.

Programs

  • PARI
    See Links section.

Formula

a(2^k) = 3*4^k = A002001(k+1) for any k >= 0.
a(2^k-1) = 4^k-1 = A024036(k) for any k >= 0.
a(n) >= A330940(n).

A163913 Number of integers i in range [A000302(n-1)..A024036(n)] of permutation A163355/A163356 with A163915(i)=i, but not A163355(i)=i.

Original entry on oeis.org

0, 0, 6, 3, 30, 27, 162, 171, 885, 987, 4839, 5502, 26436, 30216
Offset: 0

Views

Author

Antti Karttunen, Sep 19 2009

Keywords

Crossrefs

a(n) = 3*A163914(n). See also A163903.
Previous Showing 21-30 of 46 results. Next