A055841
Number of compositions of n into 3*j-1 kinds of j's for all j >= 1.
Original entry on oeis.org
1, 2, 9, 36, 144, 576, 2304, 9216, 36864, 147456, 589824, 2359296, 9437184, 37748736, 150994944, 603979776, 2415919104, 9663676416, 38654705664, 154618822656, 618475290624, 2473901162496, 9895604649984, 39582418599936, 158329674399744, 633318697598976, 2533274790395904, 10133099161583616, 40532396646334464, 162129586585337856, 648518346341351424
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
A094554
Number of closed walks of length n at a base vertex of a truncated tetrahedron (triangular prism).
Original entry on oeis.org
1, 0, 3, 2, 19, 30, 143, 322, 1179, 3110, 10183, 28842, 89939, 262990, 802623, 2380562, 7196299, 21479670, 64657463, 193535482, 581480259, 1742693150, 5231574703, 15687733602, 47077181819, 141203583430, 423666674343
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- N. L. Biggs, R. M. Damerell, and D. A. Sands, Recursive families of graphs, Journal of Combinatorial Theory Series B Volume 12 (1972), 123-131.
- R. J. Mathar, Counting Walks on Finite Graphs, Nov 2020, Section 3.
- Index entries for linear recurrences with constant coefficients, signature (2,5,-6).
-
LinearRecurrence[{2, 5, -6}, {1, 0, 3, 2}, 30] (* Greg Dresden, Jun 19 2021 *)
-
a(n) = if(n==0, 1, (1 + 3^n + 2*(-2)^n)/6) \\ Andrew Howroyd, Jun 14 2021
A256258
Triangle read by rows in which the row lengths are the terms of A011782 and row n lists the terms of A016969 except for the right border which gives the positive terms of A000225.
Original entry on oeis.org
1, 3, 5, 7, 5, 11, 17, 15, 5, 11, 17, 23, 29, 35, 41, 31, 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 63, 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, 167, 173, 179, 185, 127, 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, 107, 113, 119, 125, 131, 137
Offset: 1
Written as an irregular triangle in which the row lengths are the terms of A011782, the sequence begins:
1;
3;
5,7;
5,11,17,15;
5,11,17,23,29,35,41,31;
5,11,17,23,29,35,41,47,53,59,65,71,77,83,89,63;
5,11,17,23,29,35,41,47,53,59,65,71,77,83,89,95,101,107,113,119,125,131,137,143,149,155,161,167,173,179,185,127;
...
Illustration of initial terms in the fourth quadrant of the square grid:
------------------------------------------------------------------------
n a(n) Compact diagram
------------------------------------------------------------------------
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1 1 |_| | | |_ _ | |_ _ _ _ _ _ | |
2 3 |_ _| | |_ | | |_ _ _ _ _ | | |
3 5 |_ _ _| | | | | |_ _ _ _ | | | |
4 7 |_ _ _ _| | | | |_ _ _ | | | | |
5 5 | | |_ _ _| | | |_ _ | | | | | |
6 11 | |_ _ _ _ _| | |_ | | | | | | |
7 17 |_ _ _ _ _ _ _| | | | | | | | | |
8 15 |_ _ _ _ _ _ _ _| | | | | | | | |
9 5 | | | | | | |_ _ _| | | | | | | |
10 11 | | | | | |_ _ _ _ _| | | | | | |
11 17 | | | | |_ _ _ _ _ _ _| | | | | |
12 23 | | | |_ _ _ _ _ _ _ _ _| | | | |
13 29 | | |_ _ _ _ _ _ _ _ _ _ _| | | |
14 35 | |_ _ _ _ _ _ _ _ _ _ _ _ _| | |
15 41 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
16 31 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
a(n) is also the number of cells in the n-th region of the diagram.
It appears that A241717 can be represented by a similar diagram.
Cf.
A000225,
A000302,
A002001,
A011782,
A016969,
A141548,
A241717,
A256260,
A256261,
A256263,
A256264.
-
Nest[Join[#, Range[Length[#] - 1]*6 - 1, {2 #[[-1]] + 1}] &, {1}, 7] (* Ivan Neretin, Feb 14 2017 *)
A134683
Expansion of 1+x*(2+3*x)/(1-4*x^2).
Original entry on oeis.org
1, 2, 3, 8, 12, 32, 48, 128, 192, 512, 768, 2048, 3072, 8192, 12288, 32768, 49152, 131072, 196608, 524288, 786432, 2097152, 3145728, 8388608, 12582912, 33554432, 50331648, 134217728, 201326592, 536870912, 805306368, 2147483648, 3221225472
Offset: 0
-
A134683 := proc(n)
if n =0 then
1 ;
else
-(-1)^n*A131577(n-1)+2*procname(n-1) ;
end if;
end proc: # R. J. Mathar, Jul 22 2012
-
CoefficientList[Series[1 + x*(2 + 3*x)/(1 - 4*x^2), {x, 0, 32}], x] (* Amiram Eldar, Aug 18 2022 *)
A193723
Mirror of the fusion triangle A193722.
Original entry on oeis.org
1, 2, 1, 6, 5, 1, 18, 21, 8, 1, 54, 81, 45, 11, 1, 162, 297, 216, 78, 14, 1, 486, 1053, 945, 450, 120, 17, 1, 1458, 3645, 3888, 2295, 810, 171, 20, 1, 4374, 12393, 15309, 10773, 4725, 1323, 231, 23, 1, 13122, 41553, 58320, 47628, 24948, 8694, 2016, 300, 26, 1
Offset: 0
First six rows:
1;
2, 1;
6, 5, 1;
18, 21, 8, 1;
54, 81, 45, 11, 1;
162, 297, 216, 78, 14, 1;
-
z = 9; a = 1; b = 1; c = 1; d = 2;
p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193722 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193723 *)
A196663
Expansion of g.f. (1-4*x)/(1-13*x).
Original entry on oeis.org
1, 9, 117, 1521, 19773, 257049, 3341637, 43441281, 564736653, 7341576489, 95440494357, 1240726426641, 16129443546333, 209682766102329, 2725875959330277, 35436387471293601, 460673037126816813, 5988749482648618569, 77853743274432041397, 1012098662567616538161
Offset: 0
A085388
First differences of n^k.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 4, 0, 1, 4, 12, 18, 8, 0, 1, 5, 20, 48, 54, 16, 0, 1, 6, 30, 100, 192, 162, 32, 0, 1, 7, 42, 180, 500, 768, 486, 64, 0, 1, 8, 56, 294, 1080, 2500, 3072, 1458, 128, 0, 1, 9, 72, 448, 2058, 6480, 12500, 12288, 4374, 256, 0, 1, 10, 90, 648
Offset: 1
Rows begin
1, 0, 0, 0, 0, ...
1, 1, 2, 4, 8, ...
1, 2, 6, 18, 54, ...
1, 3, 12, 48, 192, ...
1, 4, 20, 100, 500, ...
Row-wise binomial transform is
A083064.
A098646
Trace sequence of 3 X 3 Krawtchouk matrix.
Original entry on oeis.org
3, 2, 12, 8, 48, 32, 192, 128, 768, 512, 3072, 2048, 12288, 8192, 49152, 32768, 196608, 131072, 786432, 524288, 3145728, 2097152, 12582912, 8388608, 50331648, 33554432, 201326592, 134217728, 805306368, 536870912, 3221225472, 2147483648
Offset: 0
A330941
a(n) is the greatest value whose binary representation can be obtained by interleaving (or shuffling) two copies of the binary representation of n.
Original entry on oeis.org
0, 3, 12, 15, 48, 53, 60, 63, 192, 201, 212, 219, 240, 245, 252, 255, 768, 785, 804, 819, 848, 853, 876, 887, 960, 969, 980, 987, 1008, 1013, 1020, 1023, 3072, 3105, 3140, 3171, 3216, 3237, 3276, 3303, 3392, 3401, 3412, 3435, 3504, 3509, 3548, 3567, 3840, 3857
Offset: 0
The first terms, alongside the binary representations of n and of a(n), are:
n a(n) bin(n) bin(a(n))
-- ---- ------ ----------
0 0 0 0
1 3 1 11
2 12 10 1100
3 15 11 1111
4 48 100 110000
5 53 101 110101
6 60 110 111100
7 63 111 111111
8 192 1000 11000000
9 201 1001 11001001
10 212 1010 11010100
11 219 1011 11011011
12 240 1100 11110000
See
A330940 for the minimum variant.
Original entry on oeis.org
0, 0, 6, 3, 30, 27, 162, 171, 885, 987, 4839, 5502, 26436, 30216
Offset: 0
Comments