cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A283070 Sierpinski tetrahedron or tetrix numbers: a(n) = 2*4^n + 2.

Original entry on oeis.org

4, 10, 34, 130, 514, 2050, 8194, 32770, 131074, 524290, 2097154, 8388610, 33554434, 134217730, 536870914, 2147483650, 8589934594, 34359738370, 137438953474, 549755813890, 2199023255554, 8796093022210, 35184372088834, 140737488355330, 562949953421314
Offset: 0

Views

Author

Peter M. Chema, Feb 28 2017

Keywords

Comments

Number of vertices required to make a Sierpinski tetrahedron or tetrix of side length 2^n. The sum of the vertices (balls) plus line segments (rods) of one tetrix equals the vertices of its larger, adjacent iteration. See formula.
Equivalently, the number of vertices in the (n+1)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Aug 17 2017
Also the independence number of the (n+2)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Aug 29 2021
Final digit alternates 4 and 0.

Crossrefs

Subsequence of A016957.
First bisection of A052548, A087288; second bisection of A049332, A133140, A135440.
Cf. A002023 (edge count).

Programs

Formula

G.f.: 2*(2 - 5*x)/((1 - x)*(1 - 4*x)).
a(n) = 5*a(n-1) - 4*a(n-2) for n > 1.
a(n+1) = a(n) + A002023(n).
a(n) = 2*A052539(n) = A188161(n) - 1 = A087289(n) + 1 = A056469(2*n+2) = A261723(4*n+1).
E.g.f.: 2*(exp(4*x) + exp(x)). - G. C. Greubel, Aug 17 2017

Extensions

Entry revised by Editors of OEIS, Mar 01 2017

A292543 Number of 5-cycles in the n-Sierpinski tetrahedron graph.

Original entry on oeis.org

0, 96, 384, 1536, 6144, 24576, 98304, 393216, 1572864, 6291456, 25165824, 100663296, 402653184, 1610612736, 6442450944, 25769803776, 103079215104, 412316860416, 1649267441664, 6597069766656, 26388279066624, 105553116266496, 422212465065984, 1688849860263936
Offset: 1

Views

Author

Eric W. Weisstein, Sep 18 2017

Keywords

Crossrefs

Cf. A002023 (6*4^n).
Cf. A292540 (3-cycles), A292542 (4-cycles), A292545 (6-cycles).

Programs

  • Mathematica
    Table[If[n == 1, 0, 6 4^n], {n, 20}]
    Join[{0}, LinearRecurrence[{4}, {96}, 20]]
    CoefficientList[Series[96 x/(1 - 4 x), {x, 0, 20}], x]

Formula

a(n) = 6*4^n = A002023(n) for n > 1.
a(n) = 4*a(n-1) for n > 2.
G.f.: 96*x^/(1 - 4*x).

A336641 Numbers k such that A007913(k) divides sigma(k) and A008833(k)-1 either divides A326127(k) (= sigma(k)-core(k)-k), or both are zero.

Original entry on oeis.org

6, 24, 28, 96, 120, 150, 294, 384, 496, 1014, 1536, 3276, 3750, 3780, 6144, 8128, 14406, 20328, 24576, 32760, 93750, 98304, 171366, 306180, 393216, 705894, 1241460, 1572864, 2343750, 6291456, 16380000, 24800580, 25165824, 28960854, 30387840, 33550336, 34588806, 58593750, 100663296, 165143160, 332226048, 402653184
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Comments

Numbers k such that A326128(k) = A326129(k) form a subsequence of this sequence. So far it is not known whether it contains any other terms apart from those of A000396. See comments in A326129.
Sequence is infinite because all numbers of the form 6*4^n (A002023) are present.
Question: Are there any odd terms?

Crossrefs

Cf. A000396, A002023 (subsequences).
Cf. also A336550 for a similar construction.

Programs

  • PARI
    isA336641(n) = { my(c=core(n), s=sigma(n), u=((n/c)-1)); (!(s%c) && (gcd(u,(s-c-n))==u)); };

A084431 Expansion of g.f. (1 + 6*x + 5*x^2)/((1-2*x)*(1+2*x)).

Original entry on oeis.org

1, 6, 9, 24, 36, 96, 144, 384, 576, 1536, 2304, 6144, 9216, 24576, 36864, 98304, 147456, 393216, 589824, 1572864, 2359296, 6291456, 9437184, 25165824, 37748736, 100663296, 150994944, 402653184, 603979776, 1610612736, 2415919104
Offset: 0

Views

Author

Paul Barry, Jun 26 2003

Keywords

Comments

Binomial transform is A085287.

Crossrefs

Bisections are A002023 and A002063.
Cf. A085287.

Programs

  • Magma
    [(-10*0^n-3*(-2)^n+21*2^n)/8: n in [0..30]]; // Vincenzo Librandi, Nov 16 2011
  • Mathematica
    CoefficientList[Series[(1+6x+5x^2)/((1-2x)(1+2x)),{x,0,30}],x] (* or *) Join[{1},Flatten[NestList[4#&,{6,9},15]]] (* Harvey P. Dale, Nov 05 2011 *)

Formula

a(n) = (-10*0^n - 3*(-2)^n + 21*2^n)/8.
a(n) = 4*a(n-2), n > 1. - Harvey P. Dale, Nov 05 2011
E.g.f.: (9*cosh(2*x) + 12*sinh(2*x) - 5)/4. - Stefano Spezia, Sep 20 2023

A156067 a(0)=1. a(n)= -2^(n-1)-3*(-1)^n, n>1.

Original entry on oeis.org

1, 2, -5, -1, -11, -13, -35, -61, -131, -253, -515, -1021, -2051, -4093, -8195, -16381, -32771, -65533, -131075, -262141, -524291, -1048573, -2097155, -4194301, -8388611, -16777213, -33554435, -67108861, -134217731, -268435453, -536870915, -1073741821, -2147483651
Offset: 0

Views

Author

Paul Curtz, Feb 03 2009

Keywords

Comments

The main diagonal of the array of A153130 and its successive differences.
A154589 is the second upper diagonal of the array.

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{1,2},{2,-5},40]] (* Harvey P. Dale, Dec 11 2011 *)

Formula

a(n)= +a(n-1) +2*a(n-2), n>2.
G.f.: x*(-2+7*x) / ( (1+x)*(2*x-1) ).
a(n) == A153130(n) (mod 9).
a(n+1)-2*a(n) = (-1)^n*9, n>0.
a(n) = A154589(n)-3*(-1)^n.
a(n)+a(n+3) = -A005010(n-1) = -9*A131577(n).
a(2*n)+a(2*n+1) = -3*2^(2n-1) = -A002023(n-2).

A321358 a(n) = (2*4^n + 7)/3.

Original entry on oeis.org

3, 5, 13, 45, 173, 685, 2733, 10925, 43693, 174765, 699053, 2796205, 11184813, 44739245, 178956973, 715827885, 2863311533, 11453246125, 45812984493, 183251937965, 733007751853, 2932031007405, 11728124029613, 46912496118445, 187649984473773, 750599937895085, 3002399751580333
Offset: 0

Views

Author

Paul Curtz, Nov 07 2018

Keywords

Comments

Difference table:
3, 5, 13, 45, 173, 685, 2733, ... (this sequence)
2, 8, 32, 128, 512, 2048, 8192, ... A004171
6, 24, 96, 384, 1536, 6144, 24576, ... A002023

Crossrefs

Programs

  • Mathematica
    a[n_]:= (2*4^n + 7)/3; Array[a, 20, 0] (* or *)
    CoefficientList[Series[1/3 (7 E^x + 2 E^(4 x)), {x, 0, 20}], x]*Table[n!, {n, 0, 20}] (* Stefano Spezia, Nov 10 2018 *)
  • PARI
    a(n) = (2*4^n + 7)/3; \\ Michel Marcus, Nov 08 2018
    
  • PARI
    Vec((3 - 10*x) / ((1 - x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Nov 10 2018

Formula

O.g.f.: (3 - 10*x) / ((1 - x)*(1 - 4*x)). - Colin Barker, Nov 10 2018
E.g.f.: (1/3)*(7*exp(x) + 2*exp(4*x)). - Stefano Spezia, Nov 10 2018
a(n) = 5*a(n-1) - 4*a(n-2), a(0) = 3, a(1) = 5.
a(n) = 4*a(n-1) - 7, a(0) = 3.
a(n) = (2/3)*(4^n-1)/3 + 3.
a(n) = A171382(2*n) = A155980(2*n+2).
a(n) = A193579(n)/3.
a(n) = A007583(n) + 2 = A001045(2*n+1) + 2.

Extensions

More terms from Michel Marcus, Nov 08 2018

A337217 One half of the even numbers of A094739.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 21, 23, 29, 35, 39, 71, 95
Offset: 1

Views

Author

Wolfdieter Lang, Aug 20 2020

Keywords

Comments

This finite sequence a(n), for n = 1, 2, ..., 13, appears as eq. (2.3) given by Kaplansky on p. 87.
It enters Theorem 2.1 of Kaplansky, p. 87, with proof on p. 90 (here reformulated): The positive integers uniquely represented by x^2 + y^2 + 2*z^2, with 0 <= x <= y and 0 <= z, consist of the 13 numbers a(n) and 4^k*6 = A002023(k), for integers k >= 0. See a comment in A002023 for this uniquely representable positive integers of this ternary form.
It also enters Theorem 2.3 of Kaplansky, p. 88, with proof on p.91 (here reformulated): The positive integers uniquely represented by x^2 + 2*y^2 + 4*z^2, with nonnegative integers x, y, z consist of the 13 odd numbers a(n) and the four even numbers 2, 10, 26, and 74. This is the finite sequence
1, 2, 3, 5, 7, 10, 11, 15, 21, 23, 26, 29, 35, 39, 71, 74, 95.

References

  • Irving Kaplansky, Integers Uniquely Represented by Certain Ternary Forms, in "The Mathematics of Paul Erdős I", Ronald. L. Graham and Jaroslav Nešetřil (Eds.), Springer, 1997, pp. 86 - 94.

Crossrefs

A355581 Exponentially-odd 3-smooth numbers: number of the form 2^i * 3^j where i and j are either 0 or odd.

Original entry on oeis.org

1, 2, 3, 6, 8, 24, 27, 32, 54, 96, 128, 216, 243, 384, 486, 512, 864, 1536, 1944, 2048, 2187, 3456, 4374, 6144, 7776, 8192, 13824, 17496, 19683, 24576, 31104, 32768, 39366, 55296, 69984, 98304, 124416, 131072, 157464, 177147, 221184, 279936, 354294, 393216, 497664
Offset: 1

Views

Author

Amiram Eldar, Jul 08 2022

Keywords

Examples

			6 is a term since 6 = 2^1 * 3^1 and the exponents of 2 and 3 are both odd: 1.
24 is a term since 24 = 2^3 * 3^1 and the exponents of 2 and 3 are both odd: 3 and 1, respectively.
		

Crossrefs

Intersection of A003586 and A268335.
Subsequences: A002023, A013711, A092810.
Cf. A355580.

Programs

  • Mathematica
    q[n_] := Module[{e = IntegerExponent[n, {2, 3}]}, (e[[1]] == 0 || OddQ[e[[1]]]) && (e[[2]] == 0 || OddQ[e[[2]]]) && Times@@({2, 3}^e) == n]; Select[Range[500000], q]
  • PARI
    is(n) = {my(e2 = valuation(n, 2), e3 = valuation(n, 3)); (e2 == 0 || e2%2) && (e3 == 0 || e3%2) && n == 2^e2 * 3^e3};
    
  • Python
    from itertools import count, takewhile
    def aupto(lim):
        pows2 = list(takewhile(lambda x: xMichael S. Branicky, Jul 08 2022

Formula

Sum_{n>=1} 1/a(n) = 55/24.

A141516 The main diagonal of the array of A141425 and its higher order differences.

Original entry on oeis.org

1, 2, 1, -7, -23, -1, 7, -103, -251, -133, -149, -1387, -3143, -3001, -4913, -19663, -42611, -55693, -101549, -291667, -612863, -960001, -1831433, -4460023, -9185771, -15980053, -31162949, -69500347, -141392183, -261261001
Offset: 0

Views

Author

Paul Curtz, Aug 11 2008

Keywords

Comments

The sequence A141425 and higher order differences in subsequent rows starts (see A141533):
1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4,...
1, 2, 1, 2, 1,-7, 1, 2, 1, 2, 1,-7, 1, 2, 1, 2,...
1,-1, 1, -1, -8, 8, 1,-1, 1, -1, -8, 8, 1, -1,..
-2, 2,-2, -7, 16,-7,-2, 2,-2, -7, 16,-7, -2,..
4,-4,-5, 23,-23, 5, 4,-4,-5, 23,-23, 5, 4,..
-8,-1,28,-46, 28,-1,-8,-1,28,-46, 28,-1,..
Reading downwards the main diagonal of this array defines the sequence.

Programs

  • Maple
    A108411 := proc(n) 3^floor(n/2) ; end proc:
    A141516 := proc(n) if n = 0 then 1; else (-3*(-1)^n-2^n+3*(-1)^(floor((n-1)/2))*A108411(n))/2 ; end if; end proc: # R. J. Mathar, Mar 08 2011
  • Mathematica
    LinearRecurrence[{1,-1,3,6},{1,2,1,-7,-23},30] (* Harvey P. Dale, Nov 23 2022 *)

Formula

a(n) = ( -3*(-1)^n -2^n +3*(-1)^(floor((n-1)/2))*A108411(n) )/2, n>0. - R. J. Mathar, Mar 08 2011
a(2n)+a(2n+1)= -A002023(n-1) = -3*A081294(n), n>0.
a(4n)+a(4n+1)+a(4n+2)+a(4n+3) = -120*16^(n-1), n>0.
a(4n+2)+a(4n+3)+a(4n+4)+a(4n+5) = -30*A001025(n).
G.f. x*(-2+x+6*x^2+21*x^3) / ( (2*x-1)*(1+x)*(3*x^2+1) ). - R. J. Mathar, Mar 08 2011
Previous Showing 11-19 of 19 results.