cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 81 results. Next

A046688 Antidiagonals of square array in which k-th row (k>0) is an arithmetic progression of difference 2^(k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 5, 1, 1, 5, 7, 9, 9, 1, 1, 6, 9, 13, 17, 17, 1, 1, 7, 11, 17, 25, 33, 33, 1, 1, 8, 13, 21, 33, 49, 65, 65, 1, 1, 9, 15, 25, 41, 65, 97, 129, 129, 1, 1, 10, 17, 29, 49, 81, 129, 193, 257, 257, 1, 1, 11, 19, 33, 57, 97, 161, 257, 385, 513, 513, 1
Offset: 0

Views

Author

Keywords

Examples

			From _Gus Wiseman_, May 08 2021: (Start):
Array A(m,n) = 1 + n*2^(m-1) begins:
       n=0: n=1: n=2: n=3: n=4: n=5: n=6: n=7: n=8: n=9:
  m=0:   1    1    1    1    1    1    1    1    1    1
  m=1:   1    2    3    5    9   17   33   65  129  257
  m=2:   1    3    5    9   17   33   65  129  257  513
  m=3:   1    4    7   13   25   49   97  193  385  769
  m=4:   1    5    9   17   33   65  129  257  513 1025
  m=5:   1    6   11   21   41   81  161  321  641 1281
  m=6:   1    7   13   25   49   97  193  385  769 1537
  m=7:   1    8   15   29   57  113  225  449  897 1793
  m=8:   1    9   17   33   65  129  257  513 1025 2049
  m=9:   1   10   19   37   73  145  289  577 1153 2305
Triangle T(n,k) = 1 + (n-k)*2^(k-1) begins:
   1
   1   1
   1   2   1
   1   3   3   1
   1   4   5   5   1
   1   5   7   9   9   1
   1   6   9  13  17  17   1
   1   7  11  17  25  33  33   1
   1   8  13  21  33  49  65  65   1
   1   9  15  25  41  65  97 129 129   1
   1  10  17  29  49  81 129 193 257 257   1
   1  11  19  33  57  97 161 257 385 513 513   1
(End)
		

References

  • G. H. Hardy, A Theorem Concerning the Infinite Cardinal Numbers, Quart. J. Math., 35 (1904), p. 90 = Collected Papers, Vol. VII, p. 430.

Crossrefs

Row sums are A000079.
Diagonal n = m + 1 of the array is A002064.
Diagonal n = m of the array is A005183.
Column m = 1 of the array is A094373.
Diagonal n = m - 1 of the array is A131056.
A002109 gives hyperfactorials (sigma: A260146, omega: A303281).
A009998(k,n) = n^k.
A009999(n,k) = n^k.
A057156 = (2^n)^(2^n).
A062319 counts divisors of n^n.

Programs

  • Mathematica
    Table[If[k==0,1,n*2^(k-1)+1],{n,0,9},{k,0,9}] (* ARRAY, Gus Wiseman, May 08 2021 *)
    Table[If[k==0,1,1+(n-k)*2^(k-1)],{n,0,10},{k,0,n}] (* TRIANGLE, Gus Wiseman, May 08 2021 *)
  • PARI
    A(m,n)={if(m>0, 1+n*2^(m-1), 1)}
    { for(m=0, 10, for(n=0, 10, print1(A(m,n), ", ")); print) } \\ Andrew Howroyd, Mar 07 2020

Formula

A(m,n) = 1 + n*2^(m-1) for m > 1. - Andrew Howroyd, Mar 07 2020
As a triangle, T(n,k) = A(k,n-k) = 1 + (n-k)*2^(k-1). - Gus Wiseman, May 08 2021

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 06 2000

A056584 Solution to (n^2/a(n))^a(n) = gcd(n^n, Product_{k

Original entry on oeis.org

4, 9, 0, 25, 3, 49, 4, 3, 5, 121, 12, 169, 7, 15, 16, 289, 18, 361, 20, 21, 11, 529, 24, 25, 13, 27, 28, 841, 30, 961, 32, 33, 17, 35, 36, 1369, 19, 39, 40, 1681, 42, 1849, 44, 45, 23, 2209, 48, 49, 50, 51, 52, 2809, 54, 55, 56, 57, 29, 3481, 60, 3721, 31, 63, 64, 65
Offset: 2

Views

Author

Henry Bottomley, Jul 03 2000

Keywords

Examples

			For n = 4, there are no integer solutions of (16/a)^a = 4, though there are two real solutions of about 14.5454938 and 0.3673156945.
		

Crossrefs

Formula

a(2) = 4, a(4) = 0, a(8) = 4, a(9) = 3; if p an odd prime: a(p) = p^2 and a(2p) = p; otherwise if n>1: a(n) = n. Apart from n = 4, a(n) = n^2/A056583(n) = log(A056582(n))/log(A056583(n)).

A112999 Partial sums of A036740.

Original entry on oeis.org

1, 5, 221, 331997, 24883531997, 139314094387531997, 82606411393217618227531997, 6984964247224120535022357995827531997, 109110688415578301444592123476429107940843827531997
Offset: 1

Views

Author

Jonathan Vos Post, Jan 03 2006

Keywords

Examples

			a(1) = (1!)^1 = 1^1 = 1.
a(2) = (1!)^1 + (2!)^2 = 1^1 + 2^2 = 1 + 4 = 5.
a(3) = (1!)^1 + (2!)^2 + (3!)^3 = 1^1 + 2^2 + 6^3 = 1 + 4 + 216 = 221.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Product[m^k,{m,1,k}],{k,1,n}],{n,1,10}] (* Vaclav Kotesovec, Nov 01 2014 *)
    Accumulate[Table[(n!)^n,{n,10}]] (* Harvey P. Dale, Dec 23 2019 *)
  • PARI
    a(n) = sum(k=1, n, k!^k); \\ Michel Marcus, Nov 30 2020

Formula

a(n) = Sum_{k=1..n} (k!)^k.
a(n) = Sum_{k=1..n} (A000142(k))^k.
a(n) = Sum_{k=1..n} A036740(k).
a(n) = Sum_{k=1..n} A002109(k) * A000178(k-1).

A260122 a(n) = floor( Product_{k = 1..n} k^(k/2) ).

Original entry on oeis.org

1, 2, 10, 166, 9295, 2007754, 1822022612, 7463004618900, 146894319913813741, 14689431991381374106820, 7846297508164921345697431897, 23428918818620324499511000487089219, 407740674993626332726840969430118771134776
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 17 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[Sqrt[Hyperfactorial[n]]], {n, 1, 12}]
  • PARI
    a(n) = sqrtint(prod(k=2,n,k^k)) \\ Charles R Greathouse IV, Jul 17 2015

Formula

a(n) = floor(sqrt(A002109(n))) = A000196(A002109(n)).
a(n) ~ sqrt(A)*n^(n*(n+1)/4+1/24)/exp(n^2/8), where A is the Glaisher-Kinkelin constant (A074962). - Ilya Gutkovskiy, Dec 27 2016

A260262 Number of digits of hyperfactorial(hyperfactorial(n)).

Original entry on oeis.org

1, 1, 5, 10703, 1614696745, 28812381422477890, 100652205682053466439353073, 100862590668529143951825397261798321446, 39596172587764149886638486692811308322476202830248047, 7942534398808419809836601901425429825855063583537701822391757140131840
Offset: 0

Views

Author

Matthew Campbell, Jul 21 2015

Keywords

Examples

			Hyperfactorial(Hyperfactorial(1)) = 1.  There is 1 digit in the number 1.  Because of this, a(1) = 1.
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[Log[10, Hyperfactorial[Hyperfactorial[n]]]] + 1, {n, 0, 3}]
  • PARI
    hyperfactorial(n)=prod(k=2,n,k^k)
    first(m)=vector(m,i,#digits(hyperfactorial(hyperfactorial(i)))) \\ Anders Hellström, Aug 29 2015

Formula

a(n) = floor(log_10(hyperfactorial(hyperfactorial(n))))+1.
a(n) = A055642(A002109(A002109(n))).

A260299 Numbers k such that hyperfactorial(prime(k)-1) == 1 (mod prime(k)).

Original entry on oeis.org

1, 2, 4, 15, 17, 22, 23, 27, 28, 31, 34, 43, 46, 47, 54, 56, 61, 63, 67, 73, 75, 76, 83, 91, 92, 95, 96, 101, 107, 109, 111, 115, 117, 120, 129, 132, 141, 143, 144, 146, 149, 150, 153, 154, 155, 164, 167, 181, 190, 192, 193, 205, 208, 214, 215, 219, 224, 225
Offset: 1

Views

Author

Matthew Campbell, Jul 22 2015

Keywords

Examples

			The 4th prime is 7, and the hyperfactorial of 7 is 4031078400000, which is congruent to 1 mod 7. - _Kellen Myers_, Aug 19 2015
		

Crossrefs

Programs

  • Mathematica
    PrimePi[fQ[n_]:= Mod[Hyperfactorial[n - 1], n] == 1; Select[Prime@Range@250, fQ]] (* Vincenzo Librandi, Aug 20 2015 *)
  • PARI
    is(n,p=prime(n))=prod(k=2,p-1,Mod(k,p)^k)==1 \\ Charles R Greathouse IV, Aug 29 2015

Formula

a(n) = pi(A260298(n)).

A260619 Arithmetic derivative of hyperfactorial(n).

Original entry on oeis.org

0, 0, 4, 216, 165888, 604800000, 48372940800000, 43156963184025600000, 1392410948543163924480000000, 668916177911197542484208831692800000, 8199617664717905359483850194944000000000000000, 2401010998878767104110478543683244630474752000000000000000
Offset: 0

Views

Author

Matthew Campbell, Sep 17 2015

Keywords

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n=0, 1, h(n-1)* n^n) end:
    a:= proc(n) n^n *`if`(n=0, 0,
          a(n-1)+h(n-1)*n*add(i[2]/i[1], i=ifactors(n)[2]))
        end:
    seq(a(n), n=0..15);  # Alois P. Heinz, Sep 18 2015
  • Mathematica
    a[n_] := If[n<2, 0, With[{h = Hyperfactorial[n]}, h Sum[{p, e} = pe; e/p, {pe, FactorInteger[h]}]]];
    a /@ Range[0, 15] (* Jean-François Alcover, Nov 14 2020 *)

Formula

a(n) = A003415(A002109(n)).
a(n) = A002109(n)*A190121(n) (conjectured).

Extensions

More terms from Alois P. Heinz, Sep 18 2015

A261175 Number of digits of Hyperfactorial(n).

Original entry on oeis.org

1, 1, 1, 3, 5, 8, 13, 19, 26, 35, 45, 56, 69, 84, 100, 117, 137, 158, 180, 204, 231, 258, 288, 319, 352, 387, 424, 463, 503, 546, 590, 636, 684, 734, 786, 840, 897, 955, 1015, 1077, 1141, 1207, 1275, 1345, 1418, 1492, 1568, 1647, 1728, 1811, 1896, 1983, 2072, 2163, 2257, 2352
Offset: 0

Views

Author

Robert G. Wilson v, Aug 20 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1 + Floor@ Log10@ Hyperfactorial@ n, {n, 0, 55}]
  • PARI
    a(n)=my(r=1);for(i=1,n+1,r *= i^i);floor(log(r)/log(10))+1 \\ Anders Hellström, Aug 20 2015
    
  • PARI
    vector(60, n, n--; #Str(prod(k=2, n, k^k))) \\ Michel Marcus, Aug 20 2015
    
  • Python
    A261175_list, n = [], 1
    for i in range(100):
        n *= i**i
        A261175_list.append(len(str(n)))  # Chai Wah Wu, Aug 21 2015

Formula

a(n) = 1 + floor( log_10( A002109(n))) = A055642(A002109(n)).

A278868 Second series of Hankel determinants based on hyperfactorial/4.

Original entry on oeis.org

1, 1, 6183, 5772211367657472, 76148812142946816440318638031477145600000, 3940613226283843476344831941863494501303228636304800836707599745608602091520000000000
Offset: 0

Views

Author

Karol A. Penson, Nov 29 2016

Keywords

Comments

It would be useful to know the formula for this sequence.

Crossrefs

Programs

  • Maple
    a:= n-> LinearAlgebra[Determinant](Matrix(n, (i, j)->
            (t-> mul(k^k, k=0..t)/4)(i+j))):
    seq(a(n), n=0..6);  # Alois P. Heinz, Nov 29 2016
  • Mathematica
    Table[Det[Table[Hyperfactorial[i + j]/4, {i, n}, {j, n}]], {n, 6}]

A290770 a(n) = Product_{k=1..n} k^(2*k).

Original entry on oeis.org

1, 1, 16, 11664, 764411904, 7464960000000000, 16249593066946560000000000, 11020848942410302096869949440000000000, 3102093199396597590886754340698424229232640000000000, 465607547420733489126893933985879279492195953053596584509440000000000
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 10 2017

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [(&*[k^(2*k): k in [1..n]]): n in [1..10]]; // G. C. Greubel, Oct 14 2018
  • Mathematica
    Table[Product[k^(2 k), {k, 1, n}], {n, 0, 9}]
    Table[Hyperfactorial[n]^2, {n, 0, 9}]
    Table[n!^(2 n)/BarnesG[n + 1]^2, {n, 0, 9}]
  • PARI
    a(n) = prod(k=1, n, k^(2*k)) \\ Felix Fröhlich, Aug 10 2017
    

Formula

a(n) = A002109(n)^2.
a(n) = A185141(n)/A000178(n-1)^2 for n > 0.
a(n) = (n!)^(2*n)/G(n+1)^2, where G() is the Barnes G-function.
a(n) ~ A^2*exp(-n^2/2)*n^(n*(n+1))*n^(1/6), where A is the Glaisher-Kinkelin constant (A074962).
Previous Showing 51-60 of 81 results. Next