cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 510 results. Next

A145298 Smallest k such that k^2+1 is divisible by A002144(n)^5.

Original entry on oeis.org

1068, 143044, 390112, 7745569, 6423465, 46464143, 23048345, 144762466, 404034898, 2153335831, 331407850, 1108900220, 2581164875, 760839155, 10734466938, 6595297216, 773302059, 61063137802, 31915893786, 112699451831
Offset: 1

Views

Author

Klaus Brockhaus, Oct 14 2008

Keywords

Examples

			a(4) = 7745569 since A002144(4) = 29, 7745569^2+1 = 59993839133762 = 2*29^5*97*15077 and for no k < 7745569 does 29^5 divide k^2+1.
		

Crossrefs

Cf. A002144 (primes of form 4n+1), A002313 (-1 is a square mod p), A059321, A145296, A145297, A145299.

Programs

  • PARI
    {e=5; forprime(p=2, 200, if(p%4==1, q=p^e; m=q; while(!ispower(m-1,2,&n), m=m+q); print1(n, ",")))}
    
  • Python
    from itertools import islice
    from sympy import nextprime, sqrt_mod_iter
    def A145298_gen(): # generator of terms
        p = 1
        while (p:=nextprime(p)):
            if p&3==1:
                yield min(sqrt_mod_iter(-1,p**5))
    A145298_list = list(islice(A145298_gen(),20)) # Chai Wah Wu, May 04 2024

A152680 a(n) = 4*A005098(n) = A002144(n) - 1.

Original entry on oeis.org

4, 12, 16, 28, 36, 40, 52, 60, 72, 88, 96, 100, 108, 112, 136, 148, 156, 172, 180, 192, 196, 228, 232, 240, 256, 268, 276, 280, 292, 312, 316, 336, 348, 352, 372, 388, 396, 400, 408, 420, 432, 448, 456, 460, 508, 520, 540, 556, 568, 576, 592, 600, 612, 616
Offset: 1

Views

Author

Artur Jasinski, Dec 10 2008

Keywords

Comments

If we take the 4 numbers 1, A002314(n), A152676(n), A152680(n) then the multiplication table modulo A002144(n) is isomorphic with the Latin square
1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1
and isomorphic with the multiplication table of {1,I,-I,-1} where I is sqrt(-1), A152680(n) is isomorphic with -1, A002314(n) with I or -I and A152676(n) vice versa -I or I.
1, A002314(n), A152676(n), A152680(n) are subfields of the Galois Field [A002144(n)].
Numbers n such that A172019(n) + 1 = primes - 1. - Giovanni Teofilatto, Feb 02 2010

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[If[Mod[Prime[n], 4] == 1, AppendTo[aa, Prime[n] - 1]], {n, 1, 200}]; aa

A334445 Decimal expansion of Product_{k>=1} (1 + 1/A002144(k)^4).

Original entry on oeis.org

1, 0, 0, 1, 6, 4, 9, 6, 6, 4, 0, 3, 3, 0, 0, 0, 4, 2, 5, 3, 7, 8, 5, 7, 8, 0, 7, 1, 9, 2, 9, 3, 9, 0, 8, 8, 8, 2, 7, 3, 9, 8, 4, 4, 0, 4, 3, 8, 6, 6, 9, 9, 3, 0, 0, 0, 8, 9, 8, 3, 7, 4, 0, 9, 6, 6, 7, 9, 2, 0, 4, 8, 0, 8, 2, 3, 6, 3, 4, 3, 4, 4, 1, 9, 2, 9, 8, 6, 5, 3, 3, 1, 1, 7, 8, 9, 9, 7, 0, 6, 1, 5, 7, 0, 9
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 30 2020

Keywords

Comments

In general, for s>1, Product_{k>=1} (1 + 1/A002144(k)^s)/(1 - 1/A002144(k)^s) = (zeta(s, 1/4) - zeta(s, 3/4)) * zeta(s) / (2^s * (2^s + 1) * zeta(2*s)).

Examples

			1.001649664033000425378578071929390888273984404386699300089837...
		

References

  • B. C. Berndt, Ramanujan's notebook part IV, Springer-Verlag, 1994, p. 64-65.

Crossrefs

Formula

A334445 / A334446 = 35*(PolyGamma(3, 1/4)/(8*Pi^4) - 1)/34.
A334445 * A334447 = 1680 / (17*Pi^4).

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020

A334449 Decimal expansion of Product_{k>=1} (1 + 1/A002144(k)^5).

Original entry on oeis.org

1, 0, 0, 0, 3, 2, 3, 4, 7, 5, 1, 4, 8, 0, 7, 1, 6, 3, 8, 6, 0, 3, 6, 8, 6, 4, 2, 7, 3, 3, 9, 9, 4, 2, 3, 6, 9, 2, 6, 5, 2, 4, 6, 5, 5, 2, 2, 0, 2, 7, 3, 7, 9, 8, 0, 4, 0, 7, 5, 0, 7, 1, 6, 4, 8, 5, 9, 9, 6, 3, 8, 1, 1, 3, 7, 4, 6, 8, 0, 4, 2, 2, 4, 4, 0, 6, 0, 5, 6, 3, 2, 9, 6, 0, 0, 1, 4, 1, 9, 1, 2, 7, 9, 3, 2
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 30 2020

Keywords

Comments

In general, for s>0, Product_{k>=1} (1 + 1/A002144(k)^(2*s+1))/(1 - 1/A002144(k)^(2*s+1)) = Pi^(2*s+1) * A000364(s) * zeta(2*s+1) / ((2^(2*s+2) + 2) * (2*s)! * zeta(4*s+2)). - Dimitris Valianatos, May 01 2020
In general, for s>1, Product_{k>=1} (1 + 1/A002144(k)^s)/(1 - 1/A002144(k)^s) = (zeta(s, 1/4) - zeta(s, 3/4)) * zeta(s) / (2^s * (2^s + 1) * zeta(2*s)).

Examples

			1.0003234751480716386036864273399423692652465522027379804075071648599638113746...
		

References

  • B. C. Berndt, Ramanujan's notebook part IV, Springer-Verlag, 1994, p. 64-65.

Crossrefs

Formula

A334449 / A334450 = 4725*zeta(5)/(16*Pi^5).
A334449 * A334451 = 90720*zeta(5)/Pi^10.

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020

A334450 Decimal expansion of Product_{k>=1} (1 - 1/A002144(k)^5).

Original entry on oeis.org

9, 9, 9, 6, 7, 6, 5, 2, 7, 0, 7, 9, 6, 2, 6, 6, 6, 2, 0, 1, 8, 2, 4, 6, 1, 8, 0, 8, 7, 3, 0, 8, 3, 7, 0, 1, 5, 0, 0, 7, 5, 1, 5, 7, 4, 3, 7, 9, 5, 5, 4, 4, 3, 0, 5, 6, 8, 4, 3, 2, 8, 4, 0, 4, 2, 4, 9, 7, 5, 9, 8, 1, 9, 2, 1, 2, 1, 9, 1, 3, 2, 9, 9, 7, 0, 4, 0, 0, 3, 0, 2, 9, 1, 9, 3, 0, 4, 4, 5, 3, 7, 5, 2, 8, 3, 9
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 30 2020

Keywords

Comments

In general, for s>0, Product_{k>=1} (1 + 1/A002144(k)^(2*s+1))/(1 - 1/A002144(k)^(2*s+1)) = Pi^(2*s+1) * A000364(s) * zeta(2*s+1) / ((2^(2*s+2) + 2) * (2*s)! * zeta(4*s+2)). - Dimitris Valianatos, May 01 2020
In general, for s>1, Product_{k>=1} (1 + 1/A002144(k)^s)/(1 - 1/A002144(k)^s) = (zeta(s, 1/4) - zeta(s, 3/4)) * zeta(s) / (2^s * (2^s + 1) * zeta(2*s)).

Examples

			0.999676527079626662018246180873083701500751574379554430568432840424975981921219...
		

References

  • B. C. Berndt, Ramanujan's notebook part IV, Springer-Verlag, 1994, p. 64-65.

Crossrefs

Formula

A334449 / A334450 = 4725*zeta(5)/(16*Pi^5).
A334450 * A334452 = 32/(31*zeta(5)).

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020

A082074 One quarter of first differences of primes of the form 4*k+1 (A002144).

Original entry on oeis.org

2, 1, 3, 2, 1, 3, 2, 3, 4, 2, 1, 2, 1, 6, 3, 2, 4, 2, 3, 1, 8, 1, 2, 4, 3, 2, 1, 3, 5, 1, 5, 3, 1, 5, 4, 2, 1, 2, 3, 3, 4, 2, 1, 12, 3, 5, 4, 3, 2, 4, 2, 3, 1, 6, 3, 2, 3, 1, 6, 2, 6, 6, 1, 2, 1, 6, 3, 3, 2, 6, 1, 5, 1, 12, 2, 1, 3, 6, 5, 3, 1, 2, 3, 4, 3, 2, 6, 1, 3, 2, 3, 6, 7, 3, 2, 3, 1, 3, 2, 3, 7, 3, 2, 1, 5
Offset: 1

Views

Author

Labos Elemer, Apr 07 2003

Keywords

Examples

			The first and second primes of the form 4*k+1 are 5 and 13, so a(1) = (13-5)/4 = 2.
		

Crossrefs

Programs

  • Mathematica
    k=0; m=4; r=1; Do[s=Mod[Prime[n], m]; If[Equal[s, r], rp=ep; k=k+1; ep=Prime[n]; Print[(ep-rp)/4]; ], {n, 1, 1000}]
    Differences[Select[4*Range[1000]+1,PrimeQ]]/4 (* Harvey P. Dale, Dec 04 2011 *)

Formula

a(n) = (A002144(n+1) - A002144(n))/4.

A152676 a(n) = A002144(n) - A002314(n).

Original entry on oeis.org

3, 8, 13, 17, 31, 32, 30, 50, 46, 55, 75, 91, 76, 98, 100, 105, 129, 93, 162, 112, 183, 122, 144, 177, 241, 187, 217, 228, 155, 288, 203, 189, 213, 311, 269, 274, 334, 381, 266, 392, 254, 382, 348, 413, 301, 286, 489, 439, 483, 553, 516, 476, 578, 423, 487, 504
Offset: 1

Views

Author

Artur Jasinski, Dec 10 2008

Keywords

Comments

For the four numbers {1, A002314(n), A152676(n), A152680(n)}, the multiplication table modulo A002144(n) is isomorphic with the Latin square
1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1
and is isomorphic with the multiplication table for {1,i,-i,-1} where i = sqrt(-1), A152680(n) is isomorphic with -1, A002314(n) with i or -i and A152676(n) vice versa -i or i.
1, A002314(n), A152676(n), A152680(n) are a subfield of the Galois Field [A002144(n)].
Let p = A002144(n), the n-th prime of the form 4k+1. Then a(n) and A002314(n) are the two square roots of -1 (mod p). Note that a(n) is also the multiplicative inverse of A002314(n) (mod p). - T. D. Noe, Feb 18 2010

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[If[Mod[Prime[n], 4] == 1, k = 1; While[ ! Mod[k^2 + 1, Prime[n]] == 0, k++ ]; AppendTo[aa, Prime[n] - k]], {n, 1, 200}]; aa

A173331 Second of two intermediate sequences for integral solution of A002144(n)=x^2+y^2.

Original entry on oeis.org

2, 2, 13, 2, 31, 4, 2, 55, 8, 81, 4, 91, 99, 105, 133, 10, 6, 2, 10, 181, 183, 227, 8, 237, 16, 10, 14, 265, 2, 301, 303, 16, 18, 8, 355, 379, 6, 381, 389, 14, 421, 429, 453, 451, 487, 20, 531, 543, 20, 24, 585, 24, 18, 16, 637, 631, 655, 12, 651, 675, 22, 731, 26, 741, 757
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 16 2010

Keywords

Comments

a(n) = A173330(n)*A010050(A005098(n)) mod A002144(n);
A002973(n) = MIN(a(n), A002144(n) - a(n)) / 2.

Examples

			n=7: A002144(7) = 53 = 4*13 + 1,
a(7) = A173330(7) * 26! mod 53 = 7*403291461126605635584000000 mod 53 = 2,
A002973(7) = MIN(2, 53 - 2) / 2 = 1;
n=8: A002144(8) = 61 = 4*15 + 1,
a(8) = A173330(8) * 30! mod 61 = 5*265252859812191058636308480000000 mod 61 = 55,
A002973(8) = MIN(55, 61 - 55) / 2 = 3.
		

References

  • H. Davenport, The Higher Arithmetic (Cambridge University Press 7th ed., 1999), ch. V.3, p.122.

Crossrefs

Formula

a(n) = ((2k)! / 2(k!))^2 mod p, where p = 4*k+1 = A002144(n).

A348747 Fully multiplicative with a(2) = 1, a(3) = 2, a(5) = 3, a(A002144(1+n)) = A002144(n) and a(A002145(1+n)) = a(A002145(1+n)) for all n >= 1, where A002144 and A002145 give the primes of the form 4k+1 and 4k+3 respectively.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 7, 1, 4, 3, 11, 2, 5, 7, 6, 1, 13, 4, 19, 3, 14, 11, 23, 2, 9, 5, 8, 7, 17, 6, 31, 1, 22, 13, 21, 4, 29, 19, 10, 3, 37, 14, 43, 11, 12, 23, 47, 2, 49, 9, 26, 5, 41, 8, 33, 7, 38, 17, 59, 6, 53, 31, 28, 1, 15, 22, 67, 13, 46, 21, 71, 4, 61, 29, 18, 19, 77, 10, 79, 3, 16, 37, 83, 14, 39, 43, 34, 11, 73
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2021

Keywords

Crossrefs

Left inverse of A348746.
Cf. also A064989, A332819 for similar maps.

Programs

  • PARI
    A348747(n) = { my(f=factor(n)); for(k=1,#f~, if(f[k,1]<=3, f[k,1]--, if(5==f[k,1], f[k,1]=3, if(1==(f[k,1]%4), forstep(i=primepi(f[k,1])-1,0,-1,if(1==(prime(i)%4), f[k,1]=prime(i); break)))))); factorback(f); };

Formula

Fully multiplicative with a(p) = A348745(A000720(p)).
a(A348746(n)) = n.
a(2n) = a(A000265(n)) = a(n).

A096029 Values (x+y-1)/2, where x^2+y^2=p runs over the Pythagorean primes A002144.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 5, 6, 7, 7, 8, 8, 7, 9, 9, 7, 8, 10, 9, 8, 11, 11, 10, 9, 12, 12, 12, 11, 12, 12, 13, 12, 10, 11, 14, 14, 13, 12, 14, 13, 15, 15, 16, 16, 12, 15, 14, 17, 17, 14, 17, 15, 17, 13, 15, 18, 14, 17, 19, 18, 19, 18, 16, 19, 18, 20, 16, 17, 20, 21, 21, 19, 20
Offset: 1

Views

Author

Lekraj Beedassy, Jun 16 2004

Keywords

Crossrefs

Formula

a(n)=(A079886(n) - 1)/2

Extensions

More terms from Ray Chandler, Jun 26 2004
Previous Showing 21-30 of 510 results. Next