cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 82 results. Next

A068470 Decimal expansion of exp(sqrt(Pi)).

Original entry on oeis.org

5, 8, 8, 5, 2, 7, 7, 2, 5, 0, 0, 1, 8, 0, 2, 8, 8, 7, 6, 6, 1, 1, 7, 6, 1, 8, 5, 3, 4, 0, 5, 7, 6, 9, 8, 0, 3, 9, 9, 0, 6, 9, 8, 6, 1, 8, 9, 8, 5, 9, 2, 4, 3, 3, 9, 3, 5, 1, 9, 8, 3, 4, 0, 7, 6, 2, 9, 3, 4, 2, 2, 5, 0, 2, 0, 2, 7, 1, 6, 2, 2, 1, 9, 4, 3, 3, 3, 8, 4, 5, 4, 4, 0, 2, 1, 8, 4, 1, 1, 0, 1, 0, 5, 5, 0
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			5.8852772500180288766117618534057698039906986189859...
		

Crossrefs

Cf. A002161 (sqrt(Pi)), A039661 (exp(Pi)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Exp(Sqrt(Pi(R))); // G. C. Greubel, Nov 27 2018
    
  • Maple
    evalf[120](exp(sqrt(Pi))); # Muniru A Asiru, Nov 28 2018
  • Mathematica
    RealDigits[Exp[Sqrt[Pi]],10,120][[1]] (* Harvey P. Dale, Aug 22 2012 *)
  • PARI
    default(realprecision, 100); exp(sqrt(Pi)) \\ G. C. Greubel, Jan 12 2017
    
  • Sage
    numerical_approx(exp(sqrt(pi)), digits=100) # G. C. Greubel, Nov 27 2018

A088541 Decimal expansion of sqrt(Pi)/(2K)*exp(-gamma/2) where K is the Landau-Ramanujan constant and gamma the Euler-Mascheroni constant.

Original entry on oeis.org

8, 6, 8, 9, 2, 7, 7, 6, 8, 2, 3, 4, 3, 2, 3, 8, 2, 9, 9, 0, 9, 1, 5, 2, 7, 7, 9, 1, 0, 4, 6, 5, 2, 9, 1, 2, 2, 9, 3, 9, 4, 1, 2, 8, 7, 6, 2, 2, 7, 4, 9, 2, 1, 7, 7, 4, 9, 1, 0, 1, 1, 6, 0, 2, 6, 9, 5, 4, 1, 9, 6, 6, 3, 5, 7, 4, 9, 8, 1, 2, 3, 7, 9, 7, 7, 3, 2, 5, 3, 6, 8, 6, 4, 1, 8, 0, 6, 3, 1, 7, 7, 2, 2, 4
Offset: 0

Views

Author

Benoit Cloitre, Nov 16 2003

Keywords

Comments

An illustration of the Chebyshev effect.

Examples

			0.868927768234323...
		

References

  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, p. 100.

Crossrefs

Programs

  • Mathematica
    digits = 104; LandauRamanujanK = 1/Sqrt[2]*NProduct[ ((1-2^(-2^n)) * Zeta[2^n] / DirichletBeta[2^n])^(1/2^(n+1)), {n, 1, 24}, WorkingPrecision -> digits+5]; Sqrt[Pi]/(2*LandauRamanujanK )*Exp[-EulerGamma/2] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Mar 04 2013, updated Mar 14 2018 *)

Formula

Equals sqrt(Pi)/(2K)*exp(-gamma/2) = lim x-->oo prod(1-1/p) where p runs through the primes p==3 mod 4 and p<=x.
Equals A002161*A064533/(2*exp(A155739)). - Michel Marcus, Jun 19 2020

A093204 Decimal expansion of Pi^(-1/3).

Original entry on oeis.org

6, 8, 2, 7, 8, 4, 0, 6, 3, 2, 5, 5, 2, 9, 5, 6, 8, 1, 4, 6, 7, 0, 2, 0, 8, 3, 3, 1, 5, 8, 1, 6, 4, 5, 9, 8, 1, 0, 8, 3, 6, 7, 5, 1, 5, 6, 3, 2, 4, 4, 8, 8, 0, 4, 0, 4, 2, 6, 8, 1, 5, 8, 3, 1, 1, 8, 8, 9, 9, 2, 2, 6, 4, 3, 3, 4, 0, 3, 9, 1, 8, 2, 3, 7, 6, 7, 3, 5, 0, 1, 9, 2, 2, 5, 9, 5, 5, 1, 9, 8, 6, 5, 6, 8, 5
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 22 2004

Keywords

Examples

			0.682784063255295681467020833...
		

Crossrefs

Programs

Formula

1/A092039. - M. F. Hasler, Oct 07 2014

A249538 Decimal expansion of 3*sqrt(Pi), the average perimeter of a random Gaussian triangle in two dimensions.

Original entry on oeis.org

5, 3, 1, 7, 3, 6, 1, 5, 5, 2, 7, 1, 6, 5, 4, 8, 0, 8, 1, 8, 9, 4, 5, 0, 2, 4, 5, 0, 0, 2, 3, 4, 3, 5, 5, 4, 8, 3, 9, 2, 6, 4, 8, 3, 6, 8, 3, 6, 7, 1, 6, 1, 3, 8, 4, 6, 4, 1, 4, 2, 3, 3, 6, 9, 5, 5, 8, 7, 3, 3, 8, 5, 3, 7, 7, 3, 0, 9, 6, 5, 4, 4, 1, 2, 4, 8, 5, 1, 9, 7, 0, 2, 1, 5, 6, 3, 3, 9, 9, 6, 2, 4, 8, 6, 8
Offset: 1

Views

Author

Jean-François Alcover, Oct 31 2014

Keywords

Examples

			5.317361552716548081894502450023435548392648368367161...
		

Crossrefs

Cf. A002161 (average side length in two dimensions), A102556, A102557.

Programs

  • Mathematica
    RealDigits[3*Sqrt[Pi], 10, 105] // First
  • PARI
    3*sqrt(Pi) \\ G. C. Greubel, Jan 09 2017

A294968 Decimal expansion of sqrt(7 + 4*sqrt(2))/2.

Original entry on oeis.org

1, 7, 7, 8, 8, 2, 3, 6, 4, 5, 6, 6, 3, 9, 2, 4, 4, 5, 0, 8, 5, 8, 3, 3, 4, 8, 2, 0, 4, 1, 5, 0, 2, 6, 7, 6, 0, 7, 6, 5, 0, 1, 7, 3, 7, 2, 9, 5, 2, 5, 7, 8, 5, 4, 4, 0, 7, 9, 2, 2, 8, 5, 1, 0, 5, 0, 8, 1, 8, 3, 5, 3, 5, 4, 5, 4, 7, 6, 7, 2, 3, 1, 0, 6, 4, 7, 0, 1, 9, 7, 1, 1, 0, 7, 9, 9, 9, 5
Offset: 1

Views

Author

Wolfdieter Lang, Nov 16 2017

Keywords

Comments

A construction of this length using a circle of radius of 1 (length unit) and the circumscribed and inscribed square as well as a square in the middle between them is given in figure 15 of the footnote 13 on p. 26 of M. Gardner's book. Point A is on the middle of one side, say the left, of the middle square and point B is at the intersection of the prolonged right side of the inscribed square with the middle square. Then the length AB is sqrt(AC^2 + CB^2) with point C on the middle of the right side of the inscribed square. AC = (2 - sqrt(2))/4 and CB = 1/sqrt(2) + (2 - sqrt(2))/2 = (2 + sqrt(2))/4. Therefore, AB = sqrt(7 + 4*sqrt(2))/2. See the link.
This is a not a good approximation to the squaring of the circle problem: (AB)^2 is not Pi, or AB = 1.778... is not sqrt(Pi) = A002161 = 1.772... Gardner writes that he was told "of an extremely good approximation".
An elegant construction for the reflexible Archimedean solids was devised by Alicia Boole Stott. In the process called expansion, certain sets of elements (i.e., edges or faces) are moved directly away from the center, retaining their size and orientation, until the consequent interstices can be filled with new regular faces. The reverse process is called contraction. The final edge length is the same as that of the starting solid. By contracting the truncated cube according to its triangles, the cuboctahedron is obtained. (Cf. W. W. Rouse Ball, H. S. M. Coxeter, Mathematical recreations and essays, pp. 139-140.) The factor of this contraction is 1/{a(n)} = (2/17)*sqrt(119-68*sqrt(2)) = 0.56216927542964050970... - Martin Renner, Dec 31 2019

Examples

			1.778823645663924450858334820415026760765017372952578...
		

References

  • Martin Gardner, Logic Machines and Diagrams, Second Ed., 1982, The Harvester Press, p. 26, Figure 15.
  • W. W. Rouse Ball, H. S. M. Coxeter, Mathematical recreations and essays, New York, Dover, 13th ed., 1987, pp. 139-140 (Mrs. Stott's Construction), fig. 3.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt(7+4*Sqrt(2))/2; // G. C. Greubel, Sep 30 2018
  • Mathematica
    RealDigits[Sqrt[7 + 4*Sqrt[2]]/2, 10, 100][[1]] (* G. C. Greubel, Sep 30 2018 *)
  • PARI
    sqrt(7+4*sqrt(2))/2 \\ Felix Fröhlich, Nov 16 2017
    

A337092 Decimal expansion of sqrt(40/Pi).

Original entry on oeis.org

3, 5, 6, 8, 2, 4, 8, 2, 3, 2, 3, 0, 5, 5, 4, 2, 2, 2, 9, 0, 7, 7, 9, 3, 2, 7, 4, 5, 1, 3, 0, 1, 6, 5, 1, 8, 0, 7, 8, 8, 4, 0, 5, 8, 4, 1, 1, 4, 3, 9, 0, 6, 9, 4, 3, 7, 1, 8, 5, 4, 7, 6, 9, 1, 6, 9, 1, 0, 6, 1, 5, 5, 9, 0, 6, 0, 8, 6, 1, 5, 5, 0, 5, 1, 9, 6
Offset: 1

Views

Author

Peter Munn, Aug 15 2020

Keywords

Comments

A gauge point marked c^1 or c_1 ("c" with a superscripted or subscripted "1") on slide rule calculating devices in the 20th century. The Pickworth reference notes its use "in calculating the contents of cylinders".

Examples

			3.568248232305...
		

References

  • C. N. Pickworth, The Slide Rule, 24th Ed., Pitman, London, 1945, p. 53, Gauge Points.

Crossrefs

Programs

  • Maple
    evalf(sqrt(40.0/Pi)) ; # R. J. Mathar, Sep 02 2020
  • Mathematica
    RealDigits[Sqrt[40/Pi], 10, 100][[1]] (* Amiram Eldar, Aug 15 2020 *)
  • PARI
    sqrt(40/Pi) \\ Michel Marcus, Aug 19 2020

Formula

Equals A010494/A002161 = 2*sqrt(10*A049541).

A131265 Decimal expansion of the negative of the first derivative of the Gamma Function at 1/2.

Original entry on oeis.org

3, 4, 8, 0, 2, 3, 0, 9, 0, 6, 9, 1, 3, 2, 6, 2, 0, 2, 6, 9, 3, 8, 5, 9, 5, 1, 9, 8, 1, 4, 4, 3, 4, 9, 7, 5, 0, 0, 3, 2, 4, 2, 9, 3, 3, 4, 5, 0, 3, 7, 6, 0, 2, 1, 5, 1, 5, 4, 3
Offset: 1

Views

Author

R. J. Mathar, Sep 28 2007

Keywords

Examples

			3.4802309069132620269385951981443497500324293345037602151543...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sqrt[Pi]*PolyGamma[0, 1/2], 10, 59] // First (* Jean-François Alcover, Feb 20 2013 *)
  • PARI
    print(sqrt(Pi)*(Euler+2*log(2)));

Formula

Equals A020759 * A002161.

A143149 Decimal expansion of 5*sqrt(2*Pi)/4.

Original entry on oeis.org

3, 1, 3, 3, 2, 8, 5, 3, 4, 3, 2, 8, 8, 7, 5, 0, 6, 2, 8, 0, 1, 9, 7, 0, 6, 6, 0, 6, 0, 1, 3, 8, 0, 6, 5, 6, 6, 2, 5, 8, 7, 3, 3, 4, 2, 5, 7, 6, 2, 4, 2, 2, 8, 9, 5, 7, 8, 7, 4, 0, 4, 4, 7, 0, 4, 2, 7, 8, 6, 7, 0, 6, 8, 2, 5, 9, 8, 0, 2, 4, 6, 8, 6, 8, 3, 2, 4, 4, 7, 9, 7, 9, 7, 2, 5, 7, 1, 5, 8, 2, 6, 4, 5
Offset: 1

Views

Author

Jonathan Vos Post, Jul 27 2008

Keywords

Comments

Upper bound using Shannon entropy arising in randomly-projected hypercubes.

Examples

			3.13328534328875...
		

Crossrefs

Apart from possible scaling sqrt(A019692/2^n) for n=0..7 are A019727, A002161, A069998, A019704, A217481, A019706, this sequence, A019710.
Cf. A143148 (lower bound).

Programs

  • Mathematica
    RealDigits[5*Sqrt[2*Pi]/4, 10, 120][[1]] (* Amiram Eldar, Jun 13 2023 *)
  • PARI
    5*sqrt(2*Pi)/4 \\ Michel Marcus, Mar 06 2020

Formula

Equals 10*Integral_{x>=0} x*sin(x^4) dx or 10*Integral_{x>=0} x*cos(x^4) dx (Fresnel integrals).

Extensions

Edited and a(100) corrected by Georg Fischer, Jul 16 2021

A175575 Decimal expansion of (Gamma(3/4))^2 / Pi^(3/2) .

Original entry on oeis.org

2, 6, 9, 6, 7, 6, 3, 0, 0, 5, 9, 4, 1, 8, 9, 6, 7, 8, 3, 3, 3, 9, 6, 7, 8, 6, 1, 1, 7, 7, 7, 7, 6, 3, 6, 6, 3, 8, 2, 9, 3, 4, 4, 8, 2, 7, 2, 1, 5, 2, 0, 0, 6, 5, 1, 6, 9, 9, 7, 3, 3, 1, 5, 9, 3, 1, 9, 4, 1, 4, 9, 4, 2, 4, 3, 2, 5, 7, 8, 4, 1, 4, 0, 7, 7, 9, 6, 0, 6, 8, 6, 1, 3, 7, 6, 6, 8, 8, 5, 7, 3, 6, 2, 8, 2
Offset: 0

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

Entry 34 d of chapter 11 of Ramanujan's second notebook.

Examples

			0.2696763005941896783339678...
		

Programs

  • Maple
    GAMMA(3/4)^2/Pi^(3/2) ; evalf(%) ;
  • Mathematica
    RealDigits[Gamma[3/4]^2/Pi^(3/2),10,120][[1]] (* Harvey P. Dale, Mar 16 2021 *)

Formula

Equals A068465^2 / (A000796 * A002161 ) = 1/A175576.
Equals (5/16)*hypergeom([1/4, -3/4], [3/2], 1). - Peter Bala, Mar 02 2022

A255405 a(n) = floor((2/sqrt(Pi))^n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 9, 11, 12, 14, 16, 18, 20, 23, 26, 29, 33, 37, 42, 47, 53, 60, 68, 77, 87, 98, 111, 125, 141, 159, 180, 203, 229, 258, 292, 329, 371, 419, 473, 534, 602, 680, 767, 865, 977, 1102, 1244, 1403, 1584, 1787, 2016, 2275, 2567
Offset: 0

Views

Author

Kival Ngaokrajang, Feb 22 2015

Keywords

Comments

Inspired by squaring the circle and Vitruvian Man, but starting with a unit circle and a square whose sides are of length sqrt(Pi), A002161. a(n) is the curvature (rounded down) of the n-th circle. See illustrations in the links.

Crossrefs

Programs

  • Mathematica
    Table[Floor[(2/Sqrt[Pi])^n], {n,0,50}] (* G. C. Greubel, Jan 09 2017 *)
  • PARI
    {for(n=1,100,a=floor(2^n/sqrt(Pi)^n);print1(a,", "))}

Formula

a(n) = floor((2/sqrt(Pi))^n).
Previous Showing 31-40 of 82 results. Next