cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 167 results. Next

A204273 a(n) = sigma_3(n)*Pell(n), where sigma_3(n) = A001158(n), the sum of cubes of divisors of n.

Original entry on oeis.org

1, 18, 140, 876, 3654, 17640, 58136, 238680, 745645, 2696652, 7647012, 28329840, 73547278, 250101072, 688048200, 2203964592, 5585689746, 18696302730, 45448247740, 147116748744, 371929710880, 1117549627704, 2738514030408, 8899904613600
Offset: 1

Views

Author

Paul D. Hanna, Jan 14 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} n^3*x^n/(1-x^n) = Sum_{n>=1} sigma_3(n)*x^n.

Examples

			G.f.: A(x) = x + 18*x^2 + 140*x^3 + 876*x^4 + 3654*x^5 + 17640*x^6 + ...
where A(x) = x/(1-2*x-x^2) + 2^3*2*x^2/(1-6*x^2+x^4) + 3^3*5*x^3/(1-14*x^3-x^6) + 4^3*12*x^4/(1-34*x^4+x^8) + 5^3*29*x^5/(1-82*x^5-x^10) + 6^3*70*x^6/(1-198*x^6+x^12) + ... + n^3*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) + ...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[3, n] Fibonacci[n, 2], {n, 1, 50}] (* G. C. Greubel, Jan 05 2018 *)
  • PARI
    /* Subroutines used in PARI programs below: */
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    
  • PARI
    {a(n)=sigma(n,3)*Pell(n)}
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,m^3*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

G.f.: Sum_{n>=1} n^3*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma_3(n)*Pell(n)*x^n, where Pell(n) = A000129(n) and A002203 is the companion Pell numbers.

A209447 a(n) = Pell(n)*A008653(n) for n>=1, with a(0)=1, where A008653 is the theta series of direct sum of 2 copies of hexagonal lattice.

Original entry on oeis.org

1, 12, 72, 60, 1008, 2088, 2520, 16224, 73440, 11820, 513648, 826704, 1164240, 5621448, 23265216, 14041800, 175149504, 245524824, 98791560, 1590026160, 8061191712, 3706940640, 40272058656, 64816900128, 97801149600, 487966581012, 1596075244848, 91744440540
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare g.f. to the Lambert series of A008653: 1 + 12*Sum_{n>=1} Chi(n,3)*n*x^n/(1-x^n).
Here Chi(n,3) = principal Dirichlet character of n modulo 3.

Examples

			G.f.: A(x) = 1 + 12*x + 72*x^2 + 60*x^3 + 1008*x^4 + 2088*x^5 + 2520*x^6 +...
where A(x) = 1 + 1*12*x + 2*36*x^2 + 5*12*x^3 + 12*84*x^4 + 29*72*x^5 + 70*36*x^6 +...+ Pell(n)*A008653(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 12*( 1*1*x/(1-2*x-x^2) + 2*2*x^2/(1-6*x^2+x^4) + 12*4*x^4/(1-34*x^4+x^8) + 29*5*x^5/(1-82*x^5-x^10) + 169*7*x^7/(1-478*x^7-x^14) + 408*8*x^8/(1-1154*x^8-x^16)  +...).
The values of the Dirichlet character Chi(n,3) repeat [1,1,0, ...].
		

Crossrefs

Programs

  • Mathematica
    A008653[n_]:= If[n < 1, Boole[n == 0], 12*Sum[If[Mod[d, 3] > 0, d, 0], {d, Divisors@n}]]; Join[{1}, Table[Fibonacci[n, 2]*A008653[n], {n, 1, 1000}]] (* G. C. Greubel, Jan 02 2017 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 + 12*sum(m=1,n,Pell(m)*kronecker(m,3)^2*m*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,50,print1(a(n),", "))

Formula

G.f.: 1 + 12*Sum_{n>=1} Pell(n)*Chi(n,3)*n*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).

A209449 a(n) = Pell(n)*A113973(n) for n>=1, with a(0)=1, where A113973 lists the coefficients in phi(x^3)^3/phi(x) and phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 8, -10, 24, 0, 280, -676, 1632, -1970, 0, 0, 27720, -133844, 646256, 0, 941664, 0, 10976840, -26500436, 0, -154455860, 0, 0, 2173358880, -2623476242, 25334527696, -15290740090, 73830224208, 0, 0, -1038870091396, 2508054264192, 0, 0, 0, 42600007379160
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare g.f. to the Lambert series of A113973:
1 - 2*Sum_{n>=1} Kronecker(n,3)*x^n/(1 - (-x)^n).

Examples

			G.f.: A(x) = 1 - 2*x + 8*x^2 - 10*x^3 + 24*x^4 + 280*x^6 - 676*x^7 +...
where A(x) = 1 - 1*2*x + 2*4*x^2 - 5*2*x^3 + 12*2*x^4 + 70*4*x^6 - 169*4*x^7 + 408*4*x^8 +...+ Pell(n)*A113973(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 - 2*( 1*x/(1+2*x-x^2) - 2*x^2/(1-6*x^2+x^4) + 12*x^4/(1-34*x^4+x^8) - 29*x^5/(1+82*x^5-x^10) + 169*x^7/(1+478*x^7-x^14) - 408*x^8/(1-1154*x^8+x^16) +...).
The values of the symbol Kronecker(n,3) repeat [1,-1,0, ...].
		

Crossrefs

Programs

  • Mathematica
    A113973:= CoefficientList[Series[EllipticTheta[3, 0, q^3]^3 /EllipticTheta[3, 0, q], {q, 0, 60}], q]; Table[If[n == 0, 1, Fibonacci[n, 2]*A113973[[n + 1]]], {n, 0, 50}] (* G. C. Greubel, Dec 03 2017 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 - 2*sum(m=1,n,Pell(m)*kronecker(m,3)*x^m/(1-A002203(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,60,print1(a(n),", "))

Formula

G.f.: 1 - 2*Sum_{n>=1} Pell(n)*Kronecker(n,3)*x^n/(1 - A002203(n)*(-x)^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).

A006668 Exponential self-convolution of Pell numbers (divided by 2).

Original entry on oeis.org

0, 0, 1, 6, 32, 160, 784, 3808, 18432, 89088, 430336, 2078208, 10035200, 48455680, 233967616, 1129701376, 5454692352, 26337607680, 127169265664, 614027624448, 2964787822592, 14315262312448, 69120201588736
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A084150. - Paul Barry, May 16 2003

Crossrefs

Programs

  • Magma
    [Floor(((2+Sqrt(8))^n+(2-Sqrt(8))^n-2^(n+1))/16): n in [0..30] ]; // Vincenzo Librandi, Aug 20 2011
  • Mathematica
    LinearRecurrence[{6,-4,-8},{0,0,1},30] (* Harvey P. Dale, Jul 15 2014 *)
    Table[2^(n-4)*(LucasL[n, 2] - 2), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 07 2016 *)

Formula

a(n) = ((2+sqrt(8))^n+(2-sqrt(8))^n-2^(n+1))/16; E.g.f. : exp(2x)(sinh(sqrt(2)x))^2/4=(exp(x)sinh(sqrt(2)x)/sqrt(2))^2/2. - Paul Barry, May 16 2003
G.f.: x^2/((1-2*x)*(1-4*x-4*x^2)). - Bruno Berselli, Aug 20 2011
a(n) = A006646(n)/2 = 2^(n-4)*(A002203(n) - 2). - Vladimir Reshetnikov, Oct 07 2016

A054459 A001333(n), n >= 1, convolved with itself.

Original entry on oeis.org

1, 6, 23, 76, 233, 682, 1935, 5368, 14641, 39406, 104935, 276996, 725849, 1890258, 4896415, 12624752, 32419297, 82951766, 211573047, 538086716, 1364974409, 3454480250, 8724052271, 21989264232, 55326056977, 138975010110
Offset: 0

Views

Author

Wolfdieter Lang, Apr 26 2000

Keywords

Comments

a(n) = A054458(n+1,1) (second column of convolution triangle).

References

  • R. P. Grimaldi, Ternary strings with no consecutive 0's and no consecutive 1's, Congressus Numerantium, 205 (2011), 129-149. (The sequence t_n, also the sequence lev_{n-1}.)

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, -2, -4, -1}, {1, 6, 23, 76}, 30] (* Paolo Xausa, Feb 06 2024 *)

Formula

a(n) = ((4*n+3)*LP(n)+(2*n+1)*LP(n-1))/4, n >= 1, with LP(n) = A001333(n+1), a(0) = 1.
G.f.: ((1+x)/(1-2*x-x^2))^2.
a(n) = 2*A006645(n+2) - A000129(n+1). - R. J. Mathar, Feb 05 2024

A107769 a(n) = (A001333(n+1) - 2*A005409(floor((n+3)/2)) - 1) / 4.

Original entry on oeis.org

0, 1, 2, 8, 19, 54, 130, 334, 806, 1995, 4816, 11746, 28357, 68748, 165972, 401388, 969036, 2341141, 5652014, 13649228, 32952151, 79563330, 192082870, 463752730, 1119598130, 2703006111, 6525634012, 15754412038, 38034515209, 91823775384, 221682203880, 535188986904, 1292060510616, 3119311948585
Offset: 0

Views

Author

Emeric Deutsch, Jun 12 2005

Keywords

Comments

a(n) is the number of free polyominoes of width 2 and height n+1 which have no symmetry, i.e., rotations by 180 degrees, flips along the short or long axis generate a different free polyomino. The three elements t, g+ and g- of sequences by Tasi et al. represent a domino in the short cross-section where either both, only the "upper" or only the "lower" square of the domino is occupied. E.g., a(3) = 8 represents 3 5-ominoes of shape the 2x4, 3 6-ominoes of shape 2x4, and 2 7-ominoes of shape 2x4. - R. J. Mathar, Jun 17 2020

Crossrefs

Programs

  • Mathematica
    Table[(LucasL[n+2, 2] -4*Fibonacci[Floor[n/2]+2, 2] +2)/8, {n,0,40}] (* G. C. Greubel, May 24 2021 *)
  • Sage
    [(lucas_number2(n+2,2,-1) -4*lucas_number1(2+(n//2),2,-1) +2)/8 for n in (0..40)] # G. C. Greubel, May 24 2021

Formula

4*a(n) = Pell(n+3) - Pell(n+2) - 2*Pell(floor((n+4)/2)) + 1, with Pell(n) = A000129(n). - Ralf Stephan, Jun 02 2007
G.f.: x*(1-x+x^2)/((1-x)*(1-2*x-x^2)*(1-2*x^2-x^4)). - Colin Barker, Apr 08 2013
4*a(n) = A001333(n+2) -2*A135153(n+4) +1. - R. J. Mathar, Jun 17 2020
From G. C. Greubel, May 24 2021: (Start)
a(n) = (1/4)*(A001333(n+2) - 2*A000129(floor(n/2)+2) + 1).
a(n) = (1/8)*(A002203(n+2) - 4*A000129(floor(n/2)+2) + 2). (End)

Extensions

Entry revised by N. J. A. Sloane, Jul 29 2011

A114696 Expansion of (1+4*x+x^2)/((1-x^2)*(1-2*x-x^2)); a Pellian-related sequence.

Original entry on oeis.org

1, 6, 15, 40, 97, 238, 575, 1392, 3361, 8118, 19599, 47320, 114241, 275806, 665855, 1607520, 3880897, 9369318, 22619535, 54608392, 131836321, 318281038, 768398399, 1855077840, 4478554081, 10812186006, 26102926095, 63018038200, 152139002497, 367296043198
Offset: 0

Views

Author

Creighton Dement, Feb 18 2006

Keywords

Comments

Elements of odd index give match to A065113: Sum of the squares of the n-th and the (n+1)st triangular numbers (A000217) is a perfect square.
Generating floretion: - 1.5'i + 'j + 'k - .5i' + j' + k' + .5'ii' - .5'jj' - .5'kk' - 'ij' + 'ik' - 'ji' + .5'jk' + 2'ki' - .5'kj' + .5e

Crossrefs

Programs

  • Maple
    Q:= proc(n) option remember; # Q=A002203
        if n<2 then 2
      else 2*Q(n-1) + Q(n-2)
        fi; end:
    seq((Q(n+2) -3 -(-1)^n)/2, n=0..40); # G. C. Greubel, May 24 2021
  • Mathematica
    CoefficientList[Series[(1+4*x+x^2)/((1-x^2)*(1-2*x-x^2)), {x,0,30}], x] (* or *) LinearRecurrence[{2,2,-2,-1}, {1,6,15,40}, 30] (* Harvey P. Dale, Jan 23 2014 *)
  • PARI
    Vec((1+4*x+x^2)/((1-x^2)*(1-2*x-x^2)) + O(x^30)) \\ Colin Barker, May 26 2016
    
  • Sage
    [(lucas_number2(n+2,2,-1) -3 -(-1)^n)/2 for n in (0..30)] # G. C. Greubel, May 24 2021

Formula

G.f.: (1 +4*x +x^2)/((1-x)*(1+x)*(1-2*x-x^2)).
a(0)=1, a(1)=6, a(2)=15, a(3)=40, a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4). - Harvey P. Dale, Jan 23 2014
a(n) = (-3 - (-1)^n + (3-2*sqrt(2))*(1-sqrt(2))^n + (1+sqrt(2))^n*(3+2*sqrt(2)))/2. - Colin Barker, May 26 2016
From G. C. Greubel, May 24 2021: (Start)
a(n) = 3*A000129(n+1) + A000129(n) - (3 + (-1)^n)/2.
a(n) = (1/2)*(A002203(n+2) - 3 - (-1)^n). (End)

A117918 Difference row triangle of the Pell sequence.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 2, 4, 7, 12, 4, 6, 10, 17, 29, 4, 8, 14, 24, 41, 70, 8, 12, 20, 34, 58, 99, 169, 8, 16, 28, 48, 82, 140, 239, 408, 16, 24, 40, 68, 116, 198, 338, 577, 985, 16, 32, 56, 96, 164, 280, 478, 816, 1393, 2378, 32, 48, 80, 136, 232, 396, 676, 1154, 1970, 3363, 5741
Offset: 1

Views

Author

Gary W. Adamson, Apr 02 2006

Keywords

Examples

			First few rows of the triangle are:
  1;
  1,  2;
  2,  3,  5;
  2,  4,  7, 12;
  4,  6, 10, 17, 29;
  4,  8, 14, 24, 41, 70;
  8, 12, 20, 34, 58, 99, 169;
  ...
		

References

  • Raymond Lebois, "Le théorème de Pythagore et ses implications", p. 123, Editions PIM, (1979).

Crossrefs

Column 1 is A016116(n-1).
Diagonals include A000129, A001333, A052542, A002203, A371596.

Programs

  • Magma
    Pell:= func< n | Round(((1+Sqrt(2))^n -(1-Sqrt(2))^n)/(2*Sqrt(2))) >;
    T:= func< n,k | (&+[ (-1)^j*Binomial(n-k,j)*Pell(n-j): j in [0..n-k]]) >;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 23 2021
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==1, 2^Floor[(n-1)/2], T[n, k-1] + T[n-1, k-1]];
    Table[T[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Oct 22 2021 *)
  • Sage
    def A117918(n,k): return sum( (-1)^j*binomial(n-k, j)*lucas_number1(n-j, 2,-1) for j in (0..n) )
    flatten([[A117918(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Oct 23 2021

Formula

Difference rows of the Pell sequence A000129 starting (1, 2, 5, 12, ...) become the diagonals of the triangle.
T(n, n) = A000129(n).
T(n, n-1) = A000129(n) - A000129(n-1).
From G. C. Greubel, Oct 23 2021: (Start)
T(n, k) = T(n, k-1) + T(n-1, k-1) with T(n, 1) = 2^floor((n-1)/2).
T(n, k) = Sum_{j=0..n-k} (-1)^j*binomial(n-k, j)*Pell(n-j), where Pell(n) = A000129(n).
Sum_{k=1..n} T(n, k) = Pell(n+1) -2^floor(n/2)*((1 + (-1)^n)/2) - 2^floor((n - 1)/2)*((1 - (-1)^n)/2). (End)

A182143 Number of independent vertex sets in the Moebius ladder graph with 2n nodes (n >= 0).

Original entry on oeis.org

1, 3, 5, 15, 33, 83, 197, 479, 1153, 2787, 6725, 16239, 39201, 94643, 228485, 551615, 1331713, 3215043, 7761797, 18738639, 45239073, 109216787, 263672645, 636562079, 1536796801, 3710155683, 8957108165, 21624372015, 52205852193, 126036076403, 304278004997
Offset: 0

Views

Author

Cesar Bautista, Apr 14 2012

Keywords

Comments

Also the number of vertex covers. - Eric W. Weisstein, Jan 04 2014

Crossrefs

Programs

  • Magma
    I:=[1,3,5]; [n le 3 select I[n] else Self(n-1)+3*Self(n-2)+Self(n-3): n in [1..31]]; // Bruno Berselli, Apr 14 2012
  • Mathematica
    Table[(1 + Sqrt[2])^n + (1 - Sqrt[2])^n - (-1)^n, {n, 0, 30}] (* Bruno Berselli, Apr 14 2012 *)
    Table[LucasL[n, 2] - (-1)^n, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
    LinearRecurrence[{1, 3, 1}, {1, 3, 5}, 20] (* Eric W. Weisstein, Mar 31 2017 *)
    CoefficientList[Series[(-1 - 2 x + x^2)/(-1 + x + 3 x^2 + x^3), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
  • PARI
    Vec((x^2-2*x-1)/((x+1)*(x^2+2*x-1))+O(x^31)) \\ Bruno Berselli, Apr 14 2012
    

Formula

G.f.: (x^2-2*x-1)/((x+1)*(x^2+2*x-1)).
a(n) = (1+sqrt(2))^n + (1-sqrt(2))^n - (-1)^n = A002203(n) - (-1)^n.
a(n) = a(n-1) + 3*a(n-2) + a(n-3) with a(0)=1, a(1)=3, a(2)=5.
From Peter Bala, Jun 29 2015: (Start)
a(n) = Pell(n-1) + Pell(n+1) - (-1)^n.
a(n) = [x^n] ( (1 + 2*x + sqrt(1 + 8*x + 8*x^2))/2 )^n.
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 3*x^2 + 7*x^3 + 17*x^4 + 41*x^5 + ... = Sum_{n >= 0} A001333*x^n. Cf. A098600. (End)

A209444 a(n) = Pell(n)*A000143(n) for n>=1 with a(0)=1, where A000143(n) is the number of ways of writing n as a sum of 8 squares.

Original entry on oeis.org

1, 16, 224, 2240, 13632, 58464, 219520, 930176, 3805824, 11930320, 33558336, 122352192, 440858880, 1176756448, 3112368896, 11008771200, 35248366848, 89371035936, 232665100640, 727171963840, 2289378446208, 5950875374080, 13907284255872, 43816224486528
Offset: 0

Views

Author

Paul D. Hanna, Mar 09 2012

Keywords

Comments

Compare g.f. to the Lambert series of A000143: 1 + 16*Sum_{n>=1} n^3*x^n/(1 - (-x)^n).

Examples

			G.f.: A(x) = 1 + 16*x + 112*x^2 + 896*x^3 + 3408*x^4 + 10080*x^5 +...
where A(x) = 1 + 1*16*x + 2*112*x^2 + 5*448*x^3 + 12*1136*x^4 + 29*2016*x^5 + 70*3136*x^6 + 169*5504*x^7 + 408*9328*x^8 +...+ Pell(n)*A000143(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 16*( 1*1*x/(1+2*x-x^2) + 2*8*x^2/(1-6*x^2+x^4) + 5*27*x^3/(1+14*x^3-x^6) + 12*64*x^4/(1-34*x^4+x^8) + 29*125*x^5/(1+82*x^5-x^10) + 70*216*x^6/(1-198*x^6+x^12) + 169*343*x^7/(1+478*x^7-x^14) +...).
		

Crossrefs

Programs

  • Mathematica
    A000143:= Table[SquaresR[8, n], {n, 0, 200}]; Join[{1}, Table[Fibonacci[n, 2]*A000143[[n + 1]], {n, 1, 50}]] (* G. C. Greubel, Jan 02 2018 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1+16*sum(m=1,n,Pell(m)*m^3*x^m/(1-A002203(m)*(-x)^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
    for(n=0,31,print1(a(n),", "))

Formula

G.f.: 1 + 16*Sum_{n>=1} Pell(n)*n^3*x^n/(1 - A002203(n)*(-x)^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).
Previous Showing 91-100 of 167 results. Next