cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 53 results. Next

A187243 Number of ways of making change for n cents using coins of 1, 5, and 10 cents.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 12, 12, 12, 12, 12, 16, 16, 16, 16, 16, 20, 20, 20, 20, 20, 25, 25, 25, 25, 25, 30, 30, 30, 30, 30, 36, 36, 36, 36, 36, 42, 42, 42, 42, 42, 49, 49, 49, 49, 49, 56, 56, 56, 56, 56, 64, 64, 64, 64, 64, 72, 72, 72, 72, 72
Offset: 0

Views

Author

T. D. Noe, Mar 07 2011

Keywords

Comments

a(n) is the number of partitions of n into parts 1, 5, and 10. - Joerg Arndt, Feb 02 2017
From Gerhard Kirchner, Jan 25 2017: (Start)
There is a simple recurrence for solving such problems given coin values 1 = c(1) < c(2) < ... < c(k).
Let f(n, j), 1 < j <= k, be the number of ways of making change for n cents with coin values c(i), 1 <= i <= j. Then any number m of c(j)-coins with 0 <= m <= floor(n/c(j)) can be used, and the remaining amount of change to be made using coins of values smaller than c(j) will be n - m*c(j) cents. This leads directly to the recurrence formula with a(n) = f(n, k).
For k = 3 with c(1) = 1, c(2) = 5, c(3) = 10, the recurrence can be reduced to an explicit formula; see link "Derivation of formulas".
By the way, a(n) is also the number of ways of making change for n cents using coins of 2, 5, 10 cents and at most one 1-cent coin. That is because any coin combination is, as in the original problem, fixed by the numbers of 5-cent and 10-cent coins.
(End)

Examples

			From _Gerhard Kirchner_, Jan 25 2017: (Start)
Recurrence:
a(11)  = f(11, 3) = f(11 - 0, 2) + f(11 - 10, 2)
       = f(11 - 0, 1) + f(11 - 5, 1) + f(11 - 10, 1) + f(1, 2)
       = 1 + 1 + 1 + 1 = 4.
Explicitly: a(79) = (7 + 1)*(7 + 1 + 1) = 72.
(End)
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[ 1 / ((1 - x)(1 - x^5)(1 - x^10)), {x, 0, 75} ], x ]
  • PARI
    Vec( 1/((1-x)*(1-x^5)*(1-x^10))+O(x^99)) \\ Charles R Greathouse IV, Aug 22 2011
    
  • PARI
    a(n)=(n^2+16*n+97+10*(n\5+1)*(5*(n\5)+2-n))\100 \\ Tani Akinari, Sep 10 2015
    
  • PARI
    a(n) = {my(q=n\10, s=(n%10)\5); (q+1)*(q+1+s); } \\ (Kirchner's explicit formula) Joerg Arndt, Feb 02 2017

Formula

G.f.: 1/((1-x)*(1-x^5)*(1-x^10)).
From Gerhard Kirchner, Jan 25 2017: (Start)
General recurrence: f(n, 1) = 1; j > 1: f(0, j) = 1 or f(n, j) = Sum_{m=0..floor(n/c(j))} f(n-m*c(j), j-1);
a(n) = f(n, k).
Note: f(n, j) = f(n, j-1) for n < c(j) => f(1, j) = 1.
Explicit formula:
a(n) = (q+1)*(q+1+s) with q = floor(n/10) and s = floor((n mod 10)/5). (End)
a(n) = A002620(A002266(n)+2) = floor((floor(n/5) + 2)^2 / 4). - Hoang Xuan Thanh, Jun 26 2025

A267541 Expansion of (2 + 4*x + x^2 + x^3 + 2*x^4 + x^5)/(1 - x - x^5 + x^6).

Original entry on oeis.org

2, 6, 7, 8, 10, 13, 17, 18, 19, 21, 24, 28, 29, 30, 32, 35, 39, 40, 41, 43, 46, 50, 51, 52, 54, 57, 61, 62, 63, 65, 68, 72, 73, 74, 76, 79, 83, 84, 85, 87, 90, 94, 95, 96, 98, 101, 105, 106, 107, 109, 112, 116, 117, 118, 120, 123, 127, 128, 129, 131, 134, 138, 139, 140
Offset: 0

Views

Author

Bruno Berselli, Jan 16 2016

Keywords

Comments

Also, numbers that are congruent to {2, 6, 7, 8, 10} mod 11.
(m^k+1)/11 is a nonnegative integer when
. m is a member of this sequence and k is an odd multiple of 5 (A017329),
. m is a member of A017509 and k is odd but not multiple of 5 (A045572).
If k is even, (m^k+1)/11 is never an integer.
The product of two terms does not belong to the sequence.

Examples

			From the linear recurrence:
(-A267755) ..., -12, -9, -5, -4, -3, -1, 2, 6, 7, 8, 10, 13, ... (A267541)
		

Crossrefs

Cf. A088225: numbers congruent to {2,6,7,8} mod 11.

Programs

  • Magma
    m:=70; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((2+4*x+x^2+x^3+2*x^4+x^5)/(1-x-x^5+x^6)));
    
  • Maple
    gf := (2+4*x+x^2+x^3+2*x^4+x^5)/((1-x)^2*(1+x+x^2+x^3+ x^4)): deg := 64: series(gf,x,deg): seq(coeff(%,x,n), n=0..deg-1); # Peter Luschny, Jan 19 2016
  • Mathematica
    CoefficientList[Series[(2 + 4 x + x^2 + x^3 + 2 x^4 + x^5)/(1 - x - x^5 + x^6), {x, 0, 70}], x]
    LinearRecurrence[{1, 0, 0, 0, 1, -1}, {2, 6, 7, 8, 10, 13}, 70]
    Select[Range[150], MemberQ[{2, 6, 7, 8, 10}, Mod[#, 11]]&]
  • PARI
    Vec((2+4*x+x^2+x^3+2*x^4+x^5)/(1-x-x^5+x^6)+O(x^70))
    
  • Sage
    gf = (2+4*x+x^2+x^3+2*x^4+x^5)/((1-x)^2*(1+x+x^2+x^3+ x^4))
    print(taylor(gf, x, 0, 63).list()) # Peter Luschny, Jan 19 2016

Formula

G.f.: (2 + 4*x + x^2 + x^3 + 2*x^4 + x^5)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-5) - a(n-6).
a(-n) = -A267755(n-1).

A349841 Triangle T(n,k) built by placing all ones on the left edge, [1,0,0,0,0] repeated on the right edge, and filling the body using the Pascal recurrence T(n,k) = T(n-1,k) + T(n-1,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 1, 1, 5, 10, 10, 5, 2, 0, 1, 6, 15, 20, 15, 7, 2, 0, 1, 7, 21, 35, 35, 22, 9, 2, 0, 1, 8, 28, 56, 70, 57, 31, 11, 2, 0, 1, 9, 36, 84, 126, 127, 88, 42, 13, 2, 1
Offset: 0

Views

Author

Michael A. Allen, Dec 13 2021

Keywords

Comments

This is the m=5 member in the sequence of triangles A007318, A059259, A118923, A349839, A349841 which have all ones on the left side, ones separated by m-1 zeros on the other side, and whose interiors obey Pascal's recurrence.
T(n,k) is the (n,n-k)-th entry of the (1/(1-x^5),x/(1-x)) Riordan array.
For n>0, T(n,n-1) = A002266(n+4).
For n>1, T(n,n-2) = A008732(n-2).
For n>2, T(n,n-3) = A122047(n-1).
Sums of rows give A349842.
Sums of antidiagonals give A349843.

Examples

			Triangle begins:
  1;
  1,   0;
  1,   1,   0;
  1,   2,   1,   0;
  1,   3,   3,   1,   0;
  1,   4,   6,   4,   1,   1;
  1,   5,  10,  10,   5,   2,   0;
  1,   6,  15,  20,  15,   7,   2,   0;
  1,   7,  21,  35,  35,  22,   9,   2,   0;
  1,   8,  28,  56,  70,  57,  31,  11,   2,   0;
  1,   9,  36,  84, 126, 127,  88,  42,  13,   2,   1;
		

Crossrefs

Other members of sequence of triangles: A007318, A059259, A118923, A349839.

Programs

  • Mathematica
    Flatten[Table[CoefficientList[Series[(1 - x*y)/((1 - (x*y)^5)(1 - x - x*y)), {x, 0, 20}, {y, 0, 10}], {x, y}][[n+1,k+1]],{n,0,10},{k,0,n}]]

Formula

G.f.: (1-x*y)/((1-(x*y)^5)(1-x-x*y)) in the sense that T(n,k) is the coefficient of x^n*y^k in the series expansion of the g.f.
T(n,0) = 1.
T(n,n) = delta(n mod 5,0).
T(n,1) = n-1 for n>0.
T(n,2) = (n-1)*(n-2)/2 for n>1.
T(n,3) = (n-1)*(n-2)*(n-3)/6 for n>2.
T(n,4) = (n-1)*(n-2)*(n-3)*(n-4)/24 for n>3.
T(n,5) = C(n-1,5) + 1 for n>4.
T(n,6) = C(n-1,6) + n - 6 for n>5.
For 0 <= k < n, T(n,k) = (n-k)*Sum_{j=0..floor(k/5)} binomial(n-5*j,n-k)/(n-5*j).
The g.f. of the n-th subdiagonal is 1/((1-x^5)(1-x)^n).

A008648 Molien series of 3 X 3 upper triangular matrices over GF( 5 ).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 21, 21, 21, 21, 21, 24, 24, 24, 24, 24
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of partitions of n into parts 1, 5, and 25. - Joerg Arndt, Sep 07 2019

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.

Crossrefs

Cf. A002266.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)*(1-x^5)*(1-x^25)) )); // G. C. Greubel, Sep 06 2019
    
  • Maple
    seq(coeff(series(1/((1-x)*(1-x^5)*(1-x^25)), x, n+1), x, n), n = 0 .. 70); # modified by G. C. Greubel, Sep 06 2019
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-x^5)*(1-x^25)), {x,0,70}], x] (* G. C. Greubel, Sep 06 2019 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)*(1-x^5)*(1-x^25))) \\ G. C. Greubel, Sep 06 2019
    
  • Sage
    def A008648_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x)*(1-x^5)*(1-x^25))).list()
    A008648_list(70) # G. C. Greubel, Sep 06 2019

Formula

G.f.: 1/((1-x)*(1-x^5)*(1-x^25)).

A010885 Period 6: repeat [1, 2, 3, 4, 5, 6].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3
Offset: 0

Views

Author

Keywords

Comments

Partial sums are given by A130484(n)+n+1. - Hieronymus Fischer, Jun 08 2007
41152/333333 = 0.123456123456123456... [Eric Desbiaux, Nov 03 2008]

Crossrefs

Cf. A177158 (decimal expansion of (103+2*sqrt(4171))/162). [From Klaus Brockhaus, May 03 2010]

Programs

Formula

a(n) = 1 + (n mod 6). - Paolo P. Lava, Nov 21 2006
a(n) = A010875(n)+1. G.f.: g(x)=(Sum_{0<=k<6} (k+1)*x^k)/(1-x^6). Also g(x)=(6*x^7-7*x^6+1)/((1-x^6)*(1-x)^2). - Hieronymus Fischer, Jun 08 2007
From Wesley Ivan Hurt, Jun 17 2016: (Start)
G.f.: (1+2*x+3*x^2+4*x^3+5*x^4+6*x^5)/(1-x^6).
a(n) = (21-3*cos(n*Pi)-4*sqrt(3)*cos((1-4*n)*Pi/6)-12*sin((1+2*n)*Pi/6))/6.
a(n) = a(n-6) for n>5. (End)

A010889 Simple periodic sequence: repeat 1,2,3,4,5,6,7,8,9,10.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1
Offset: 0

Views

Author

Keywords

Comments

Partial sums are given by A130488(n)+n+1. - Hieronymus Fischer, Jun 08 2007
Continued fraction expansion of (232405+sqrt(71216963807))/348378. [From Klaus Brockhaus, May 15 2010]

Crossrefs

Cf. A177933 (decimal expansion of (232405+sqrt(71216963807))/348378). [From Klaus Brockhaus, May 15 2010]

Programs

  • Mathematica
    PadRight[{},120,Range[10]] (* Harvey P. Dale, Feb 22 2015 *)
  • Python
    def a(n): return n % 10 + 1 # Paul Muljadi, Aug 06 2024

Formula

a(n) = 1 + (n mod 10) - Paolo P. Lava, Nov 21 2006
From Hieronymus Fischer, Jun 08 2007: (Start)
a(n) = A010879(n)+1.
G.f.: (Sum_{k=0..9} (k+1)*x^k)/(1-x^10).
G.f.: (10x^11-11x^10+1)/((1-x^10)(1-x)^2). (End)

Extensions

More terms from Klaus Brockhaus, May 15 2010

A194222 a(n) = floor(Sum_{k=1..n} frac(k/5)), where frac() = fractional part.

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 6, 6, 6, 7, 8, 8, 8, 8, 9, 10, 10, 10, 10, 11, 12, 12, 12, 12, 13, 14, 14, 14, 14, 15, 16, 16, 16, 16, 17, 18, 18, 18, 18, 19, 20, 20, 20, 20, 21, 22, 22, 22, 22, 23, 24, 24, 24, 24, 25, 26, 26, 26, 26, 27, 28, 28, 28, 28, 29, 30
Offset: 1

Views

Author

Clark Kimberling, Aug 19 2011

Keywords

Crossrefs

Cf. A118015.

Programs

  • Maple
    seq(floor((n+1)/5)+floor((n+2)/5), n=1..80); # Ridouane Oudra, Dec 14 2021
  • Mathematica
    r = 1/5;
    a[n_] := Floor[Sum[FractionalPart[k*r], {k, 1, n}]]
    Table[a[n], {n, 1, 90}]    (* A194222 *)
    s[n_] := Sum[a[k], {k, 1, n}]
    Table[s[n], {n, 1, 100}]   (* A118015 *)
    LinearRecurrence[{1,0,0,0,1,-1},{0,0,1,2,2,2},80] (* Harvey P. Dale, Jun 06 2024 *)

Formula

From Chai Wah Wu, Jun 10 2020: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
G.f.: x^3*(x + 1)/((x-1)^2*(1+x+x^2+x^3+x^4)). (End)
a(n) = floor((n+1)/5) + floor((n+2)/5). - Ridouane Oudra, Dec 14 2021
a(n) = A002266(n+1)+A002266(n+2). - R. J. Mathar, Nov 21 2023

A246720 Number A(n,k) of partitions of n into parts of the k-th list of distinct parts in the order given by A246688; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 2, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 0, 1, 1, 3, 0, 1, 0, 1, 1, 0, 2, 0, 3, 1, 1, 0, 1, 0, 1, 0, 2, 0, 4, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 4, 1, 1, 0, 1, 1, 0, 1, 2, 0, 3, 0, 5, 0, 1, 0, 1, 1, 2, 0, 1, 2, 0, 3, 0, 5, 1, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 02 2014

Keywords

Comments

The first lists of distinct parts in the order given by A246688 are: 0:[], 1:[1], 2:[2], 3:[1,2], 4:[3], 5:[1,3], 6:[4], 7:[1,4], 8:[2,3], 9:[5], 10:[1,2,3], 11:[1,5], 12:[2,4], 13:[6], 14:[1,2,4], 15:[1,6], 16:[2,5], 17:[3,4], 18:[7], 19:[1,2,5], 20:[1,3,4], ... .

Examples

			Square array A(n,k) begins:
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1,  1, ...
  0, 1, 0, 1, 0, 1, 0, 1, 0, 0,  1, 1, 0, 0,  1, ...
  0, 1, 1, 2, 0, 1, 0, 1, 1, 0,  2, 1, 1, 0,  2, ...
  0, 1, 0, 2, 1, 2, 0, 1, 1, 0,  3, 1, 0, 0,  2, ...
  0, 1, 1, 3, 0, 2, 1, 2, 1, 0,  4, 1, 2, 0,  4, ...
  0, 1, 0, 3, 0, 2, 0, 2, 1, 1,  5, 2, 0, 0,  4, ...
  0, 1, 1, 4, 1, 3, 0, 2, 2, 0,  7, 2, 2, 1,  6, ...
  0, 1, 0, 4, 0, 3, 0, 2, 1, 0,  8, 2, 0, 0,  6, ...
  0, 1, 1, 5, 0, 3, 1, 3, 2, 0, 10, 2, 3, 0,  9, ...
  0, 1, 0, 5, 1, 4, 0, 3, 2, 0, 12, 2, 0, 0,  9, ...
  0, 1, 1, 6, 0, 4, 0, 3, 2, 1, 14, 3, 3, 0, 12, ...
		

Crossrefs

Main diagonal gives A246721.
Cf. A246688, A246690 (the same for compositions).

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [[]], `if`(i>n, [],
          [map(x->[i, x[]], b(n-i, i+1))[], b(n, i+1)[]]))
        end:
    f:= proc() local i, l; i, l:=0, [];
          proc(n) while n>=nops(l)
            do l:=[l[], b(i, 1)[]]; i:=i+1 od; l[n+1]
          end
        end():
    g:= proc(n, l) option remember; `if`(n=0, 1, `if`(l=[], 0,
          add(g(n-l[-1]*j, subsop(-1=NULL, l)), j=0..n/l[-1])))
        end:
    A:= (n, k)-> g(n, f(k)):
    seq(seq(A(n, d-n), n=0..d), d=0..16);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {{}}, If[i > n, {}, Join[Prepend[#, i]& /@ b[n - i, i + 1], b[n, i + 1]]]];
    f = Module[{i = 0, l = {}}, Function[n, While[ n >= Length[l], l = Join[l, b[i, 1]]; i++ ]; l[[n + 1]]]];
    g[n_, l_] := g[n, l] = If[n == 0, 1, If[l == {}, 0, Sum[g[n - l[[-1]] j, ReplacePart[l, -1 -> Nothing]], {j, 0, n/l[[-1]]}]]];
    A[n_, k_] := g[n, f[k]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 16}] // Flatten (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)

A008496 a(n) = floor(n/5)*floor((n+1)/5)*floor((n+2)/5).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 2, 4, 8, 8, 8, 12, 18, 27, 27, 27, 36, 48, 64, 64, 64, 80, 100, 125, 125, 125, 150, 180, 216, 216, 216, 252, 294, 343, 343, 343, 392, 448, 512, 512, 512, 576, 648, 729, 729, 729, 810, 900, 1000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A008382, A008497. - R. J. Mathar, Apr 16 2010

Programs

  • GAP
    List([0..55], n-> Int(n/5)*Int((n+1)/5)*Int((n+2)/5) ); # G. C. Greubel, Nov 08 2019
  • Magma
    [&*[Floor((n+j)/5): j in [0..2]]: n in [0..55]]; // G. C. Greubel, Nov 08 2019
    
  • Maple
    seq( mul(floor((n+j)/5), j=0..2), n=0..55); # G. C. Greubel, Nov 08 2019
  • Mathematica
    LinearRecurrence[{1,0,0,0,3,-3,0,0,0,-3,3,0,0,0,1,-1}, {0,0,0,0,0,1,1,1, 2,4,8,8,8,12,18,27},60] (* or *) Table[Times@@Thread[Floor[(n +{0,1,2} )/5]],{n,0,60}] (* Harvey P. Dale, Apr 09 2018 *)
    Product[Floor[(Range[55] +j-1)/5], {j,0,2}] (* G. C. Greubel, Nov 08 2019 *)
  • PARI
    vector(56, n, prod(j=0,2, (n+j-1)\5) ) \\ G. C. Greubel, Nov 08 2019
    
  • Sage
    [product(floor((n+j)/5) for j in (0..2)) for n in (0..55)] # G. C. Greubel, Nov 08 2019
    

Formula

From R. J. Mathar, Apr 16 2010: (Start)
a(n) = A002266(n)*A008497(n+1).
a(n) = a(n-1) +3*a(n-5) -3*a(n-6) -3*a(n-10) +3*a(n-11) +a(n-15) -a(n-16).
G.f.: x^5*(1+x+x^2)*(x^6-x^5+2*x^3-x+1)/((x^4+x^3+x^2+x+1)^3 *(x-1)^4). (End)

A008497 a(n) = floor(n/5)*floor((n+1)/5).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 4, 4, 4, 4, 6, 9, 9, 9, 9, 12, 16, 16, 16, 16, 20, 25, 25, 25, 25, 30, 36, 36, 36, 36, 42, 49, 49, 49, 49, 56, 64, 64, 64, 64, 72, 81, 81, 81, 81, 90, 100, 100, 100, 100, 110, 121, 121, 121, 121
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A002266.

Programs

  • GAP
    List([0..55], n-> Int(n/5)*Int((n+1)/5) ); # G. C. Greubel, Nov 08 2019
  • Magma
    [&*[Floor((n+j)/5): j in [0..1]]: n in [0..55]]; // G. C. Greubel, Nov 08 2019
    
  • Maple
    seq( mul(floor((n+j)/5), j=0..1), n=0..55); # G. C. Greubel, Nov 08 2019
  • Mathematica
    Times@@@Partition[Floor[Range[0,60]/5],2,1] (* or *) LinearRecurrence[ {1,0,0,0,2,-2,0,0,0,-1,1},{0,0,0,0,0,1,1,1,1,2,4},60] (* Harvey P. Dale, Feb 01 2015 *)
    Product[Floor[(Range[55] +j-1)/5], {j,0,1}] (* G. C. Greubel, Nov 08 2019 *)
  • PARI
    a(n) = (n\5)*((n+1)\5); \\ Michel Marcus, Jan 06 2017
    
  • PARI
    vector(56, n, prod(j=0,1, (n+j-1)\5) ) \\ G. C. Greubel, Nov 08 2019
    
  • Sage
    [product(floor((n+j)/5) for j in (0..1)) for n in (0..55)] # G. C. Greubel, Nov 08 2019
    

Formula

From R. J. Mathar, Apr 16 2010: (Start)
a(n) = A002266(n)*A002266(n+1).
a(n)= a(n-1) + 2*a(n-5) - 2*a(n-6) - a(n-10) + a(n-11).
G.f.: x^5*(1+x^4)/ ((x^4+x^3+x^2+x+1)^2 * (1-x)^3). (End)
From Amiram Eldar, May 10 2025: (Start)
Sum_{n>=5} 1/a(n) = 2*Pi^2/3 + 1.
Sum_{n>=5} (-1)^(n+1)/a(n) = 2*log(2)-1. (End)
Previous Showing 31-40 of 53 results. Next