cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A002281 a(n) = 7*(10^n - 1)/9.

Original entry on oeis.org

0, 7, 77, 777, 7777, 77777, 777777, 7777777, 77777777, 777777777, 7777777777, 77777777777, 777777777777, 7777777777777, 77777777777777, 777777777777777, 7777777777777777, 77777777777777777, 777777777777777777, 7777777777777777777, 77777777777777777777, 777777777777777777777
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A178634(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
From Vincenzo Librandi, Jul 22 2010: (Start)
a(n) = a(n-1) + 7*10^(n-1) with n>0, a(0)=0.
a(n) = 11*a(n-1) - 10*a(n-2) with n>1, a(0)=0, a(1)=7. (End)
G.f.: 7*x/((x-1)*(10*x-1)). - Colin Barker, Jan 24 2013
a(n) = 7*A002275(n). - Wesley Ivan Hurt, Mar 24 2015
E.g.f.: 7*exp(x)*(exp(9*x) - 1)/9. - Stefano Spezia, Sep 13 2023
From Elmo R. Oliveira, Jul 20 2025: (Start)
a(n) = (A099915(n) - 1)/2.
a(n) = A010785(A017245(n-1)) for n >= 1. (End)

A075415 Squares of A002280 or numbers (666...6)^2.

Original entry on oeis.org

0, 36, 4356, 443556, 44435556, 4444355556, 444443555556, 44444435555556, 4444444355555556, 444444443555555556, 44444444435555555556, 4444444444355555555556, 444444444443555555555556, 44444444444435555555555556, 4444444444444355555555555556, 444444444444443555555555555556
Offset: 0

Views

Author

Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002

Keywords

Comments

A transformation of the Wonderful Demlo numbers (A002477).

Examples

			a(2) = 66^2 = 4356.
From _Reinhard Zumkeller_, May 31 2010: (Start)
n=1: ..................... 36 = 9 * 4;
n=2: ................... 4356 = 99 * 44;
n=3: ................. 443556 = 999 * 444;
n=4: ............... 44435556 = 9999 * 4444;
n=5: ............. 4444355556 = 99999 * 44444;
n=6: ........... 444443555556 = 999999 * 444444;
n=7: ......... 44444435555556 = 9999999 * 4444444;
n=8: ....... 4444444355555556 = 99999999 * 44444444;
n=9: ..... 444444443555555556 = 999999999 * 444444444. (End)
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[PadRight[{},n,6]]^2,{n,0,20}] (* or *) LinearRecurrence[ {111,-1110,1000},{0,36,4356},20] (* Harvey P. Dale, May 20 2021 *)

Formula

a(n) = A002280(n)^2 = (6*A002275(n))^2 = 36*A002275(n)^2.
a(n) = (6*(10^n-1)/9)^2 = (4/9)*(10^(2*n) - 2*10^n + 1), which is n-1 4's, followed by a 3, n-1 5's and a 6. - Ignacio Larrosa Cañestro, Feb 26 2005
From Reinhard Zumkeller, May 31 2010: (Start)
a(n) = ((A002278(n-1)*10 + 3)*10^(n-1) + A002279(n-1))*10 + 6 for n>0.
a(n) = A002283(n)*A002278(n). (End)
G.f.: 36*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Arkadiusz Wesolowski, Dec 26 2011
From Elmo R. Oliveira, Jul 27 2025: (Start)
E.g.f.: 4*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/9.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3).
a(n) = 36*A002477(n). (End)

Extensions

Edited by Alois P. Heinz, Aug 21 2019 (merged with A102794, submitted by Richard C. Schroeppel, Feb 26 2005)

A256291 Numbers which have only digits 5 and 6 in base 10.

Original entry on oeis.org

5, 6, 55, 56, 65, 66, 555, 556, 565, 566, 655, 656, 665, 666, 5555, 5556, 5565, 5566, 5655, 5656, 5665, 5666, 6555, 6556, 6565, 6566, 6655, 6656, 6665, 6666, 55555, 55556, 55565, 55566, 55655, 55656, 55665, 55666, 56555, 56556
Offset: 1

Views

Author

M. F. Hasler, Mar 27 2015

Keywords

Crossrefs

Cf. A007088 (digits 0 & 1), A007931 (digits 1 & 2), A032810 (digits 2 & 3), A032834 (digits 3 & 4), A256290 (digits 4 & 5), A256292 (digits 6 & 7), A256340 (digits 7 & 8), A256341 (digits 8 & 9).

Programs

  • Magma
    [n: n in [1..60000] | Set(IntegerToSequence(n, 10)) subset {5, 6}];
    
  • Magma
    [n: n in [1..100000] | Set(Intseq(n)) subset {5,6}]; // :Vincenzo Librandi_, Aug 19 2016
  • Mathematica
    Flatten[Table[FromDigits[#,10]&/@Tuples[{5,6},n],{n,5}]]
  • PARI
    A256291(n)=vector(#n=binary(n+1)[2..-1],i,10^(#n-i))*n~+10^#n\9*5
    

Formula

a(n) = A007931(n) + A002278(A000523(n+1)) = A256290(n) + A256077(n) etc.

A178632 a(n) = 45*((10^n - 1)/9)^2.

Original entry on oeis.org

45, 5445, 554445, 55544445, 5555444445, 555554444445, 55555544444445, 5555555444444445, 555555554444444445, 55555555544444444445, 5555555555444444444445, 555555555554444444444445, 55555555555544444444444445, 5555555555555444444444444445, 555555555555554444444444444445
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2010

Keywords

Examples

			n=1: ..................... 45 = 9 * 5;
n=2: ................... 5445 = 99 * 55;
n=3: ................. 554445 = 999 * 555;
n=4: ............... 55544445 = 9999 * 5555;
n=5: ............. 5555444445 = 99999 * 55555;
n=6: ........... 555554444445 = 999999 * 555555;
n=7: ......... 55555544444445 = 9999999 * 5555555;
n=8: ....... 5555555444444445 = 99999999 * 55555555;
n=9: ..... 555555554444444445 = 999999999 * 555555555.
		

Crossrefs

Programs

Formula

a(n) = 45*A002477(n) = A002283(n)*A002279(n).
a(n) = (A002279(n-1)*10^n + A002278(n))*10 + 5.
G.f.: 45*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Ilya Gutkovskiy, Feb 24 2017
From Elmo R. Oliveira, Aug 01 2025: (Start)
E.g.f.: 5*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/9.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 3. (End)

A086066 a(n) = Sum_{d in D(n)} 2^d, where D(n) = set of digits of n in decimal representation.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 3, 2, 6, 10, 18, 34, 66, 130, 258, 514, 5, 6, 4, 12, 20, 36, 68, 132, 260, 516, 9, 10, 12, 8, 24, 40, 72, 136, 264, 520, 17, 18, 20, 24, 16, 48, 80, 144, 272, 528, 33, 34, 36, 40, 48, 32, 96, 160, 288, 544, 65, 66, 68, 72, 80
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 08 2003

Keywords

Comments

For bitwise logical operations AND and OR:
a(m) = (a(m) AND a(n)) iff D(m) is a subset of D(n),
(a(m) AND a(n)) = 0 iff D(m) and D(n) are disjoint,
a(m) = (a(m) OR a(n)) iff D(n) is a subset of D(m),
a(m) = a(n) iff D(m) = D(n);
A086067(n) = A007088(a(n)).
From Reinhard Zumkeller, Sep 18 2009: (Start)
a(A052382(n)) mod 2 = 0; a(A011540(n)) mod 2 = 1;
for n > 0: a(A000004(n))=1, a(A000042(n))=2, a(A011557(n))=3, a(A002276(n))=4, a(A111066(n))=6, a(A002277(n))=8, a(A002278(n))=16, a(A002279(n))=32, a(A002280(n))=64, a(A002281(n))=128, a(A002282(n))=256, a(A002283(n))=512;
a(n) <= 1023. (End)

Examples

			n=242, D(242) = {2,4}: a(242) = 2^2 + 2^4 = 20.
		

Programs

  • Maple
    A086066 := proc(n) local d: if(n=0)then return 1: fi: d:=convert(convert(n,base,10),set): return add(2^d[j],j=1..nops(d)): end: seq(A086066(n),n=0..64); # Nathaniel Johnston, May 31 2011

A332140 a(n) = 4*(10^(2n+1)-1)/9 - 4*10^n.

Original entry on oeis.org

0, 404, 44044, 4440444, 444404444, 44444044444, 4444440444444, 444444404444444, 44444444044444444, 4444444440444444444, 444444444404444444444, 44444444444044444444444, 4444444444440444444444444, 444444444444404444444444444, 44444444444444044444444444444, 4444444444444440444444444444444
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002278 (4*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332120 .. A332190 (variants with different repeated digit 2, ..., 9).
Cf. A332141 .. A332149 (variants with different middle digit 1, ..., 9).

Programs

  • Maple
    A332140 := n -> 4*((10^(2*n+1)-1)/9-10^n);
  • Mathematica
    Array[4 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
    LinearRecurrence[{111,-1110,1000},{0,404,44044},20] (* Harvey P. Dale, Jul 06 2021 *)
  • PARI
    apply( {A332140(n)=(10^(n*2+1)\9-10^n)*4}, [0..15])
    
  • Python
    def A332140(n): return (10**(n*2+1)//9-10**n)*4

Formula

a(n) = 4*A138148(n) = A002278(2n+1) - 4*10^n.
G.f.: 4*x*(101 - 200*x)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332149 a(n) = 4*(10^(2*n+1)-1)/9 + 5*10^n.

Original entry on oeis.org

9, 494, 44944, 4449444, 444494444, 44444944444, 4444449444444, 444444494444444, 44444444944444444, 4444444449444444444, 444444444494444444444, 44444444444944444444444, 4444444444449444444444444, 444444444444494444444444444, 44444444444444944444444444444, 4444444444444449444444444444444
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002278 (4*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332119 .. A332189 (variants with different repeated digit 1, ..., 8).
Cf. A332140 .. A332148 (variants with different middle digit 0, ..., 8).

Programs

  • Maple
    A332149 := n -> 4*(10^(2*n+1)-1)/9+5*10^n;
  • Mathematica
    Array[4 (10^(2 # + 1)-1)/9 + 5*10^# &, 15, 0]
  • PARI
    apply( {A332149(n)=10^(n*2+1)\9*4+5*10^n}, [0..15])
    
  • Python
    def A332149(n): return 10**(n*2+1)//9*4+5*10**n

Formula

a(n) = 4*A138148(n) + 9*10^n = A002278(2n+1) + 5*10^n.
G.f.: (9 - 505*x + 100*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A180160 (sum of digits) mod (number of digits) of n in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 15 2010

Keywords

Comments

a(n) = A007953(n) mod A055642(n);
a(A061383(n)) = 0; a(A180157(n)) > 0;
a(repdigits)=0: a(A010785(n))=0: a(A002275(n))=0: a(A002276(n))=0: a(A002277(n))=0: a(A002278(n))=0: a(4(n))=0: a(A002279(n))=0: a(A002280(n))=0: a(A002281(n))=0: a(A002282(n))=0: a(A002283(n))=0;
A123522 gives smallest m such that a(m) = n.

Crossrefs

Programs

  • Mathematica
    A180160[n_] := If[n == 0, 0, Mod[Total[#], Length[#]] & [IntegerDigits[n]]];
    Array[A180160, 100, 0] (* Paolo Xausa, Jun 30 2024 *)
    Join[{0},Table[Mod[Total[IntegerDigits[n]],IntegerLength[n]],{n,110}]] (* Harvey P. Dale, Jul 30 2025 *)

A268620 Numbers whose digital sum is a multiple of 4.

Original entry on oeis.org

0, 4, 8, 13, 17, 22, 26, 31, 35, 39, 40, 44, 48, 53, 57, 62, 66, 71, 75, 79, 80, 84, 88, 93, 97, 103, 107, 112, 116, 121, 125, 129, 130, 134, 138, 143, 147, 152, 156, 161, 165, 169, 170, 174, 178, 183, 187, 192, 196, 202, 206, 211, 215, 219, 220, 224, 228, 233, 237, 242, 246
Offset: 1

Views

Author

Bruno Berselli, Feb 09 2016

Keywords

Comments

a(1498) = 5999 is the smallest term that is congruent to 5 modulo 9.

Crossrefs

Cf. A007953, A061383 (supersequence).
Cf. numbers whose digital sum is a multiple of k: A054683 (k=2), A008585 (k=3), this sequence (k=4), A227793 (k=5).

Programs

  • Magma
    [n: n in [0..250] | IsIntegral(&+Intseq(n)/4)];
  • Maple
    select(t -> convert(convert(t,base,10),`+`) mod 4 = 0, [$1..1000]); # Robert Israel, Feb 09 2016
  • Mathematica
    Select[Range[0, 250], IntegerQ[Total[IntegerDigits[#]]/4] &]

A332141 a(n) = 4*(10^(2*n+1)-1)/9 - 3*10^n.

Original entry on oeis.org

1, 414, 44144, 4441444, 444414444, 44444144444, 4444441444444, 444444414444444, 44444444144444444, 4444444441444444444, 444444444414444444444, 44444444444144444444444, 4444444444441444444444444, 444444444444414444444444444, 44444444444444144444444444444, 4444444444444441444444444444444
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002278 (4*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332121 .. A332191 (variants with different repeated digit 2, ..., 9).
Cf. A332140 .. A332149 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332141 := n -> 4*(10^(2*n+1)-1)/9-3*10^n;
  • Mathematica
    Array[4 (10^(2 # + 1)-1)/9 - 3*10^# &, 15, 0]
    LinearRecurrence[{111,-1110,1000},{1,414,44144},20] (* or *) Table[ FromDigits[Join[PadRight[{},n,4],{1},PadRight[{},n,4]]],{n,0,20}](* Harvey P. Dale, Aug 17 2020 *)
  • PARI
    apply( {A332141(n)=10^(n*2+1)\9*4-3*10^n}, [0..15])
    
  • Python
    def A332141(n): return 10**(n*2+1)//9*4-3*10**n

Formula

a(n) = 4*A138148(n) + 1*10^n = A002278(2n+1) - 3*10^n.
G.f.: (1 + 303*x - 700*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
Previous Showing 11-20 of 29 results. Next