A235535
a(n) = binomial(9*n, 3*n) / (6*n + 1).
Original entry on oeis.org
1, 12, 1428, 246675, 50067108, 11124755664, 2619631042665, 642312451217745, 162250238001816900, 41932353590942745504, 11034966795189838872624, 2946924270225408943665279, 796607831560617902288322405, 217550867863011281855594752680
Offset: 0
Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k:
A000108 (l=1, k=1),
A001764 (l=2, k=1),
A002293 (l=3, k=1),
A002294 (l=4, k=1),
A002295 (l=5, k=1),
A002296 (l=6, k=1),
A007556 (l=7, k=1),
A062994 (l=8, k=1),
A059968 (l=9, k=1),
A230388 (l=10, k=1),
A048990 (l=2, k=2),
A235534 (l=4, k=2),
A235536 (l=6, k=2),
A187357 (l=3, k=3), this sequence (l=6, k=3).
-
l:=6; k:=3; [Binomial((l+k)*n,k*n)/(l*n+1): n in [0..20]]; /* here l is divisible by all the prime factors of k */
-
seq(binomial(9*n,3*n)/(6*n+1), n=0..30); # Robert Israel, Feb 15 2021
-
Table[Binomial[9 n, 3 n]/(6 n + 1), {n, 0, 20}]
A346938
a(n) = Sum_{d|n} mu(n/d) * binomial(7*d,d) / (6*d+1).
Original entry on oeis.org
1, 6, 69, 812, 10471, 141702, 1997687, 28988856, 430321563, 6503342378, 99726673129, 1547847703500, 24269405074739, 383846166714410, 6116574500850339, 98106248277869040, 1582638261961640246, 25661404527359789034, 417980115131315136399, 6836064539918615002932
Offset: 1
-
Table[Sum[MoebiusMu[n/d] Binomial[7 d, d]/(6 d + 1), {d, Divisors[n]}], {n, 20}]
A349590
G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x) + x * (1 - 2*x)^5 * A(x)^7.
Original entry on oeis.org
1, 3, 15, 132, 1595, 22134, 329718, 5136028, 82579819, 1359902823, 22818697128, 388728802702, 6705324823466, 116878939752376, 2055505806198352, 36427660285955808, 649894104351874395, 11662729497015257677, 210383830525447606431, 3812719304673511150854
Offset: 0
-
nmax = 19; A[] = 0; Do[A[x] = 1/(1 - 2 x) + x (1 - 2 x)^5 A[x]^7 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n, k] Binomial[7 k, k] 2^(n - k)/(6 k + 1), {k, 0, n}], {n, 0, 19}]
-
a(n) = sum(k=0, n, binomial(n,k)*binomial(7*k,k)*2^(n-k)/(6*k+1)); \\ Michel Marcus, Nov 23 2021
A386380
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/6)} a(6*k) * a(n-1-6*k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 15, 24, 34, 45, 57, 70, 154, 253, 368, 500, 650, 819, 1827, 3045, 4495, 6200, 8184, 10472, 23562, 39627, 59052, 82251, 109668, 141778, 320866, 543004, 814506, 1142295, 1533939, 1997688, 4540200, 7718340, 11633440, 16398200, 22137570
Offset: 0
-
A386380 := proc(n)
option remember ;
if n = 0 then
1;
else
add(procname(6*k)*procname(n-1-6*k),k=0..floor((n-1)/6)) ;
end if;
end proc:
seq(A386380(n),n=0..80) ; # R. J. Mathar, Jul 30 2025
-
apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
a(n) = apr(n\6, 7, n%6+1);
A235536
a(n) = binomial(8*n, 2*n) / (6*n + 1).
Original entry on oeis.org
1, 4, 140, 7084, 420732, 27343888, 1882933364, 134993766600, 9969937491420, 753310723010608, 57956002331347120, 4524678117939182220, 357557785658996609700, 28545588568201512137904, 2298872717007844035521848, 186533392975795702301759056
Offset: 0
Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k:
A000108 (l=1, k=1),
A001764 (l=2, k=1),
A002293 (l=3, k=1),
A002294 (l=4, k=1),
A002295 (l=5, k=1),
A002296 (l=6, k=1),
A007556 (l=7, k=1),
A062994 (l=8, k=1),
A059968 (l=9, k=1),
A230388 (l=10, k=1),
A048990 (l=2, k=2),
A235534 (l=4, k=2), this sequence (l=6, k=2),
A187357 (l=3, k=3),
A235535 (l=6, k=3).
-
l:=6; k:=2; [Binomial((l+k)*n,k*n)/(l*n+1): n in [0..20]]; /* where l is divisible by all the prime factors of k */
-
Table[Binomial[8 n, 2 n]/(6 n + 1), {n, 0, 20}]
A364476
G.f. satisfies A(x) = 1 + x*A(x) + x^2*A(x)^7.
Original entry on oeis.org
1, 1, 2, 9, 44, 226, 1241, 7093, 41666, 250260, 1529993, 9488398, 59545909, 377451385, 2413157855, 15542535697, 100753850132, 656856027658, 4303970039402, 28328599504756, 187214549485759, 1241775795647609, 8263989319451514, 55163575187733922
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(n+5*k, k)*binomial(n+4*k, n-2*k)/(6*k+1));
A206289
G.f.: Sum_{n>=0} Product_{k=1..n} Series_Reversion( x*(1 - x^k) ).
Original entry on oeis.org
1, 1, 2, 4, 10, 25, 73, 214, 679, 2189, 7331, 24867, 86269, 302144, 1072621, 3837768, 13853674, 50319789, 183941789, 675731105, 2494370326, 9244865453, 34394851701, 128390336942, 480749791772, 1805161153783, 6795744287172, 25643914891284, 96980809856731
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 25*x^5 + 73*x^6 + 214*x^7 +...
such that, by definition,
A(x) = 1 + G_1(x) + G_1(x)*G_2(x) + G_1(x)*G_2(x)*G_3(x) + G_1(x)*G_2(x)*G_3(x)*G_4(x) +...
where G_n( x*(1 - x^n) ) = x.
The first few expansions of G_n(x) begin:
G_1(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 +...+ A000108(n)*x^(n+1) +...
G_2(x) = x + x^3 + 3*x^5 + 12*x^7 + 55*x^9 +...+ A001764(n)*x^(2*n+1) +...
G_3(x) = x + x^4 + 4*x^7 + 22*x^10 + 140*x^13 +...+ A002293(n)*x^(3*n+1) +...
G_4(x) = x + x^5 + 5*x^9 + 35*x^13 + 285*x^17 +...+ A002294(n)*x^(4*n+1) +...
G_5(x) = x + x^6 + 6*x^11 + 51*x^16 + 506*x^21 +...+ A002295(n)*x^(5*n+1) +...
G_6(x) = x + x^7 + 7*x^13 + 70*x^19 + 819*x^25 +...+ A002296(n)*x^(6*n+1) +...
Note that G_n(x) = x + x*G_n(x)^(n+1).
-
{a(n)=polcoeff(sum(m=0,n,prod(k=1,m,serreverse(x*(1-x^k+x*O(x^n))))),n)}
for(n=0,35,print1(a(n),", "))
A059967
Number of 9-ary trees.
Original entry on oeis.org
1, 9, 117, 1785, 29799, 527085, 9706503, 184138713, 3573805950, 70625252863, 1416298046436, 28748759731965, 589546754316126, 12195537924351375, 254184908607118800, 5332692942907262361, 112524941404978156215
Offset: 0
Claude Lenormand (claude.lenormand(AT)free.fr), Mar 05 2001
- S. Heubach, N. Y. Li and T. Mansour, Staircase tilings and k-Catalan structures, Discrete Math., 308 (2008), 5954-5964.
- J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
Related algebraic sequences concerning trees: strictly k-ary trees (
A000108: s=x+s^2,
A001263: s=(x, y)+(x, s)+(s, y)+(s, s))), (
A001764: s=x+s^3), (
A002293: s=x+s^4), (
A002294: s=x+s^5), (
A002295: s=x+s^6), (
A002296: s=x+s^7), (
A007556: s=x+s^8), at most k-ary trees (
A001006: s=x+xs+xs^2), (
A036765-
A036769, s=x+xs^2....+xs^k, k=3, 4, 5, 6, 7).
A386392
a(n) = 4 * binomial(7*n+4,n)/(7*n+4).
Original entry on oeis.org
1, 4, 34, 368, 4495, 59052, 814506, 11633440, 170574723, 2552698720, 38832808586, 598724403680, 9335085772194, 146936230074004, 2331703871687400, 37263447339612480, 599206511767593099, 9688121925389895636, 157401957319775436400, 2568427016865897264000
Offset: 0
-
apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
a(n) = apr(n, 7, 4);
A137211
Generalized or s-Catalan numbers.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 5, 12, 22, 1, 14, 55, 140, 285, 1, 42, 273, 969, 2530, 5481, 1, 132, 1428, 7084, 23751, 62832, 141778, 1, 429, 7752, 53820, 231880, 749398, 1997688, 4638348, 1, 1430, 43263, 420732, 2330445, 9203634, 28989675, 77652024
Offset: 1
{1},
{1, 1},
{1, 2, 3},
{1, 5, 12, 22},
{1, 14, 55, 140, 285},
{1, 42, 273, 969, 2530, 5481},
{1, 132, 1428, 7084, 23751, 62832, 141778},
{1, 429, 7752, 53820, 231880, 749398, 1997688, 4638348}
- Heinrich Niederhausen, Catalan Traffic at the Beach, Electronic Journal of Combinatorics, Volume 9 (2002), #R33.
- A. Regev, The Central Component of a Triangulation, J. Int. Seq. 16 (2013) #13.4.1
- Alison Schuetz and Gwyneth Whieldon, Polygonal Dissections and Reversions of Series, arXiv:1401.7194 [math.CO], 2014.
- P. Stanica, p^q-Catalan numbers and squarefree binomial coefficients, J. Numb. Theory 100 (2003) 203-216.
-
t[n_, m_] := Binomial[m*n, n]/((m - 1)*n + 1); a = Table[Table[t[n, m], {m, 1, n + 1}], {n, 0, 10}]; Flatten[a]
Comments