cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 71 results. Next

A128164 Least k > 2 such that (n^k - 1)/(n-1) is prime, or 0 if no such prime exists.

Original entry on oeis.org

3, 3, 0, 3, 3, 5, 3, 0, 19, 17, 3, 5, 3, 3, 0, 3, 25667, 19, 3, 3, 5, 5, 3, 0, 7, 3, 5, 5, 5, 7, 0, 3, 13, 313, 0, 13, 3, 349, 5, 3, 1319, 5, 5, 19, 7, 127, 19, 0, 3, 4229, 103, 11, 3, 17, 7, 3, 41, 3, 7, 7, 3, 5, 0, 19, 3, 19, 5, 3, 29, 3, 7, 5, 5, 3, 41, 3, 3, 5, 3, 0, 23, 5, 17, 5, 11, 7, 61, 3, 3
Offset: 2

Views

Author

Alexander Adamchuk, Feb 20 2007

Keywords

Comments

a(n) = A084740(n) for all n except n = p-1, where p is an odd prime, for which A084740(n) = 2.
All nonzero terms are odd primes.
a(n) = 0 for n = {4,9,16,25,32,36,49,64,81,100,121,125,144,...}, which are the perfect powers with exceptions of the form n^(p^m) where p>2 and (n^(p^(m+1))-1)/(n^(p^m)-1) are prime and m>=1 (in which case a(n^(p^m))=p). - Max Alekseyev, Jan 24 2009
a(n) = 3 for n in A002384, i.e., for n such that n^2 + n + 1 is prime.
a(152) > 20000. - Eric Chen, Jun 01 2015
a(n) is the least number k such that (n^k - 1)/(n-1) is a Brazilian prime, or 0 if no such Brazilian prime exists. - Bernard Schott, Apr 23 2017
These corresponding Brazilian primes are in A285642. - Bernard Schott, Aug 10 2017
a(152) = 270217, see the top PRP link. - Eric Chen, Jun 04 2018
a(184) = 16703, a(200) = 17807, a(210) = 19819, a(306) = 26407, a(311) = 36497, a(326) = 26713, a(331) = 25033; a(185) > 66337, a(269) > 63659, a(281) > 63421, and there are 48 unknown a(n) for n <= 1024. - Eric Chen, Jun 04 2018
Six more terms found: a(522)=20183, a(570)=12907, a(684)=22573, a(731)=15427, a(820)=12043, a(996)=14629. - Michael Stocker, Apr 09 2020

Examples

			a(7) = 5 because (7^5 - 1)/6 = 2801 = 11111_7 is prime and (7^k - 1)/6 = 1, 8, 57, 400 for k = 1, 2, 3, 4. - _Bernard Schott_, Apr 23 2017
		

Crossrefs

Cf. A002384, A049409, A100330, A162862, A217070-A217089. (numbers b such that (b^p-1)/(b-1) is prime for prime p = 3 to 97)
A126589 gives locations of zeros.

Programs

  • Mathematica
    Table[Function[m, If[m > 0, k = 3; While[! PrimeQ[(m^k - 1)/(m - 1)], k++]; k, 0]]@ If[Set[e, GCD @@ #[[All, -1]]] > 1, {#, IntegerExponent[n, #]} &@ Power[n, 1/e] /. {{k_, m_} /; Or[Not[PrimePowerQ@ m], Prime@ m, FactorInteger[m][[1, 1]] == 2] :> 0, {k_, m_} /; m > 1 :> n}, n] &@ FactorInteger@ n, {n, 2, 17}] (* Michael De Vlieger, Apr 24 2017 *)
  • PARI
    a052409(n) = my(k=ispower(n)); if(k, k, n>1)
    a052410(n) = if (ispower(n, , &r), r, n)
    is(n) = issquare(n) || (ispower(n) && !ispseudoprime((n^a052410(a052409(n))-1)/(n-1)))
    a(n) = if(is(n), 0, forprime(p=3, 2^16, if(ispseudoprime((n^p-1)/(n-1)), return(p)))) \\ Eric Chen, Jun 01 2015, corrected by Eric Chen, Jun 04 2018, after Charles R Greathouse IV in A052409 and Michel Marcus in A052410

Extensions

a(18) = 25667 found by Henri Lifchitz, Sep 26 2007

A185632 Primes of the form n^2 + n + 1 where n is nonprime.

Original entry on oeis.org

3, 43, 73, 157, 211, 241, 421, 463, 601, 757, 1123, 1483, 2551, 2971, 3307, 3907, 4423, 4831, 5701, 6007, 6163, 6481, 8191, 9901, 11131, 12211, 12433, 13807, 14281, 19183, 20023, 20593, 21757, 22651, 23563, 24181, 26083, 26407, 27061, 28393, 31153, 35533
Offset: 1

Views

Author

Bernard Schott, Dec 18 2012

Keywords

Comments

These are the primes associated with A182253.
All these numbers are in A002383 but not in A053183.
All the numbers n^2 + n + 1 = 111_n with n >= 2 are by definition Brazilian numbers: A125134. See Links: "Les nombres brésiliens" - Section V.5 page 35.

Crossrefs

Programs

  • Mathematica
    Select[Table[If[PrimeQ[n],Nothing,n^2+n+1],{n,200}],PrimeQ] (* Harvey P. Dale, Apr 02 2023 *)
  • PARI
    lista(nn) = {for (n = 1, nn, if (! isprime(n) && isprime(p = n^2 + n + 1), print1(p, ", ");););} \\ Michel Marcus, Sep 04 2013

A217071 Numbers k such that (k^17-1)/(k-1) is prime.

Original entry on oeis.org

2, 11, 20, 21, 28, 31, 55, 57, 62, 84, 87, 97, 107, 109, 129, 147, 149, 157, 160, 170, 181, 189, 191, 207, 241, 247, 251, 274, 295, 297, 315, 327, 335, 349, 351, 355, 364, 365, 368, 379, 383, 410, 419, 423, 431, 436, 438, 466, 472, 506, 513, 527, 557, 571, 597
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [2..1000] |IsPrime((n^17 - 1) div (n - 1))]; // Vincenzo Librandi, Sep 28 2012
    
  • Mathematica
    Select[Range[2, 1000], PrimeQ[(#^17 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^17-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A110284 Squares of the form 4p - 3, where p is a prime.

Original entry on oeis.org

9, 25, 49, 121, 169, 289, 625, 841, 961, 1225, 1681, 1849, 2401, 3025, 4489, 5929, 6889, 10201, 11881, 13225, 14161, 15625, 17689, 19321, 20449, 22801, 24025, 24649, 25921, 32041, 32761, 39601, 41209, 44521, 48841, 49729, 55225, 57121, 69169
Offset: 1

Views

Author

Giovanni Teofilatto, Sep 07 2005

Keywords

Comments

Also: squares of the form 2*s-3, where s is a semiprime, A107317. - Franklin T. Adams-Watters, Jun 28 2010
Squares are less dense then primes and easy to generate so it's faster to check squares if they are of the required form than to check if primes are of the required form. - David A. Corneth, Oct 15 2018

Crossrefs

Programs

  • Magma
    [4*p - 3: p in PrimesUpTo(10^5)|IsSquare (4*p - 3)]; // Vincenzo Librandi, Oct 17 2018
  • Mathematica
    Select[ 4Prime[ Range[2000]] - 3, IntegerQ[ Sqrt[ # ]] &] (* Robert G. Wilson v, Sep 20 2005 *)
  • PARI
    isok(n) = issquare(n) && (p=(n+3)/4) && (frac(p)==0) && isprime(p); \\ Michel Marcus, Oct 15 2018
    
  • PARI
    upto(n) = my(res = List()); forstep(i = 3, sqrtint(n), 2, if(isprime((i^2+3)/4), listput(res, i^2))); res \\ David A. Corneth, Oct 15 2018
    

Formula

a(n) = 4*A002383(n) - 3 = A088503(n-1)^2.

Extensions

Extended by Ray Chandler, Sep 07 2005

A217072 Numbers k such that (k^19-1)/(k-1) is prime.

Original entry on oeis.org

2, 10, 11, 12, 14, 19, 24, 40, 45, 46, 48, 65, 66, 67, 75, 85, 90, 103, 105, 117, 119, 137, 147, 164, 167, 179, 181, 205, 220, 235, 242, 253, 254, 263, 268, 277, 303, 315, 332, 337, 366, 369, 370, 389, 399, 404, 424, 431, 446, 449, 480, 481, 506, 509, 521, 523
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [2..1000] |IsPrime((n^19 - 1) div (n - 1))]; // Vincenzo Librandi, Sep 28 2012
    
  • Mathematica
    Select[Range[2, 1000], PrimeQ[(#^19 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^19-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A246397 Numbers n such that Phi(12, n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

2, 3, 4, 5, 9, 10, 12, 13, 17, 25, 27, 30, 31, 36, 38, 39, 43, 48, 52, 55, 56, 61, 62, 65, 83, 92, 94, 99, 100, 104, 105, 109, 114, 118, 126, 131, 166, 168, 169, 172, 183, 185, 190, 194, 196, 198, 209, 224, 225, 229, 231, 239, 244, 257, 260, 261, 263, 269, 270, 272, 278, 291, 296, 299, 300, 302, 308, 311
Offset: 1

Views

Author

Eric Chen, Nov 13 2014

Keywords

Comments

Numbers n such that n^4-n^2+1 is prime, or numbers n such that A060886(n) is prime.

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862 (11), this sequence (12), A217070 (13), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075 (31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078 (43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536).

Programs

  • Maple
    A246397:=n->`if`(isprime(n^4-n^2+1),n,NULL): seq(A246397(n),n=1..300); # Wesley Ivan Hurt, Nov 14 2014
  • Mathematica
    Select[Range[350], PrimeQ[Cyclotomic[12, #]] &] (* Vincenzo Librandi, Jan 17 2015 *)
  • PARI
    for(n=1,10^3,if(isprime(polcyclo(12,n)),print1(n,", "))); \\ Joerg Arndt, Nov 13 2014

A268043 Numbers k such that k^3 - 1 and k^3 + 1 are both semiprimes.

Original entry on oeis.org

6, 1092, 1932, 2730, 4158, 6552, 11172, 25998, 30492, 55440, 76650, 79632, 85092, 102102, 150990, 152082, 152418, 166782, 211218, 235662, 236208, 248640, 264600, 298410, 300300, 301182, 317772, 380310, 387198, 441798, 476028, 488418
Offset: 1

Views

Author

Vincenzo Librandi, Jan 25 2016

Keywords

Comments

Obviously, k+1 and k-1 are always prime numbers.
If k is a term then m = (k - 1) * (k^2 + k + 1) is a term of A169635, i.e., A001157(m) = A001157(m+2) (De Koninck, 2002). - Amiram Eldar, Apr 19 2024

Examples

			a(1) = 6 because 6^3-1 = 215 = 5*43 and 6^3+1 = 217 = 7*31, therefore 215, 217 are both semiprimes.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [2..300000] | IsSemiprime(n^3+1) and IsSemiprime(n^3-1) ];
    
  • Mathematica
    Select[Range[500000], PrimeOmega[#^3 - 1] == PrimeOmega[#^3 + 1] == 2 &]
    Select[Range[10^6], And @@ PrimeQ[{# - 1, # + 1, #^2 - # + 1, #^2 + # + 1}] &] (* Amiram Eldar, Apr 19 2024 *)
  • PARI
    isok(n) = (bigomega(n^3-1) == 2) && (bigomega(n^3+1) == 2); \\ Michel Marcus, Jan 26 2016
    
  • PARI
    is(n) = isprime(n - 1) && isprime(n + 1) && isprime(n^2 - n + 1) && isprime(n^2 + n + 1); \\ Amiram Eldar, Apr 19 2024

A217073 Numbers k such that (k^23-1)/(k-1) is prime.

Original entry on oeis.org

10, 40, 82, 113, 127, 141, 170, 257, 275, 287, 295, 315, 344, 373, 442, 468, 609, 634, 646, 663, 671, 710, 819, 834, 857, 884, 894, 904, 992, 997, 1060, 1069, 1077, 1120, 1143, 1190, 1232, 1253, 1261, 1280, 1291, 1347, 1407, 1436, 1448, 1483, 1514, 1570, 1642
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [2..1700] |IsPrime((n^23 - 1) div (n - 1))]; // Vincenzo Librandi, Sep 28 2012
    
  • Mathematica
    Select[Range[2, 1700], PrimeQ[(#^23 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^23-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A217074 Numbers k such that (k^29-1)/(k-1) is prime.

Original entry on oeis.org

6, 40, 65, 70, 114, 151, 221, 229, 268, 283, 398, 451, 460, 519, 554, 587, 627, 628, 659, 687, 699, 859, 884, 915, 943, 974, 986, 1101, 1120, 1159, 1176, 1212, 1223, 1297, 1312, 1322, 1337, 1390, 1409, 1415, 1446, 1477, 1508, 1592, 1636, 1691, 1800, 1802, 1803
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [2..2000] |IsPrime((n^29 - 1) div (n - 1))]; // Vincenzo Librandi, Sep 28 2012
    
  • Mathematica
    Select[Range[2, 2000], PrimeQ[(#^29 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^29-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A217075 Numbers k such that (k^31-1)/(k-1) is prime.

Original entry on oeis.org

2, 14, 19, 31, 44, 53, 71, 82, 117, 127, 131, 145, 177, 197, 203, 241, 258, 261, 276, 283, 293, 320, 325, 379, 387, 388, 406, 413, 461, 462, 470, 486, 491, 534, 549, 569, 582, 612, 618, 639, 696, 706, 723, 746, 765, 767, 774, 796, 802, 877, 878, 903, 923, 981
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [2..1000] |IsPrime((n^31 - 1) div (n - 1))]; // Vincenzo Librandi, Sep 28 2012
    
  • Mathematica
    Select[Range[2, 1000], PrimeQ[(#^31 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^31-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012
Previous Showing 11-20 of 71 results. Next