cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 73 results. Next

A139345 Decimal expansion of sine of the golden ratio. That is, the decimal expansion of sin((1+sqrt(5))/2).

Original entry on oeis.org

9, 9, 8, 8, 8, 4, 5, 0, 9, 0, 9, 4, 8, 8, 4, 7, 9, 8, 8, 3, 3, 2, 6, 8, 2, 4, 2, 6, 3, 0, 1, 2, 9, 0, 4, 4, 6, 3, 8, 6, 5, 1, 1, 9, 2, 1, 2, 7, 0, 5, 7, 4, 4, 3, 4, 5, 5, 3, 9, 9, 6, 6, 8, 8, 1, 0, 7, 1, 8, 2, 3, 9, 1, 8, 2, 7, 9, 9, 5, 4, 0, 9, 2, 6, 6, 8, 5, 3, 3, 6, 0, 4, 0, 4, 4, 6, 0, 2, 7, 1, 8, 5, 2, 1
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			0.99888450909488479883326824263012904463865119212705...
		

Crossrefs

Programs

Formula

Equals sin(A001622).
Equals 1/A139350. - Amiram Eldar, Feb 07 2022

Extensions

Leading zero removed by R. J. Mathar, Feb 05 2009

A371525 Decimal expansion of Product_{k>=1} (1 + 1/Lucas(k)).

Original entry on oeis.org

4, 7, 9, 6, 2, 8, 8, 5, 2, 3, 1, 8, 8, 3, 8, 5, 4, 6, 3, 8, 1, 0, 3, 7, 0, 1, 4, 0, 7, 5, 1, 2, 1, 5, 8, 4, 9, 8, 1, 9, 5, 1, 6, 3, 0, 8, 0, 9, 2, 3, 4, 7, 7, 4, 1, 8, 3, 7, 3, 9, 5, 7, 2, 2, 0, 5, 7, 8, 3, 4, 2, 6, 1, 6, 7, 9, 3, 5, 0, 8, 9, 5, 4, 9, 8, 5, 7, 6, 6, 1, 0, 8, 0, 0, 6, 2, 8, 3, 1, 2, 5, 4, 6, 6, 6
Offset: 1

Views

Author

Amiram Eldar, Mar 26 2024

Keywords

Comments

Any two of the four constants {A337668, A337669, this, A371526} are algebraically independent over Q, while any three are not (Duverney et al., 2022).

Examples

			4.79628852318838546381037014075121584981951630809234...
		

Crossrefs

Programs

  • Mathematica
    With[{eta = DedekindEta, tau0 = Log[GoldenRatio]*I/Pi}, RealDigits[2 * Surd[GoldenRatio, 4] * eta[2*tau0]^3 * eta[3*tau0]/(eta[tau0]^2 * eta[4*tau0]), 10, 120][[1]]]
  • PARI
    prodinf(k = 1, 1 + 1/(fibonacci(k-1) + fibonacci(k+1)))

Formula

Equals Product_{k>=1} (1 + 1/A000032(k)).
Equals 2 * sqrt(5) * A371529.
Equals 2 * phi^(1/4) * eta(2*tau_0)^3 * eta(3*tau_0) / (eta(tau_0)^2 * eta(4*tau_0)), where phi is the golden ratio (A001622), tau_0 = i*log(phi)/Pi, and i = sqrt(-1) (Duverney et al., 2022).

A371526 Decimal expansion of Product_{k>=2} (1 - 1/Lucas(k)).

Original entry on oeis.org

3, 3, 5, 8, 9, 7, 6, 6, 9, 3, 5, 7, 1, 0, 2, 1, 0, 3, 1, 4, 7, 6, 6, 5, 7, 2, 6, 6, 3, 1, 2, 2, 6, 5, 8, 0, 4, 8, 5, 4, 6, 1, 0, 4, 0, 2, 1, 3, 7, 3, 4, 8, 9, 4, 1, 8, 0, 5, 4, 6, 6, 6, 6, 6, 6, 1, 2, 9, 8, 0, 8, 6, 8, 0, 5, 3, 9, 2, 5, 3, 6, 6, 8, 4, 8, 5, 7, 6, 2, 6, 1, 2, 8, 3, 5, 0, 3, 4, 3, 5, 5, 3, 0, 7, 2, 4, 8, 2, 2, 4, 4, 0, 3, 5, 1, 7, 6, 7, 7, 1
Offset: 0

Views

Author

Amiram Eldar, Mar 26 2024

Keywords

Comments

Any two of the four constants {A337668, A337669, A371525, this} are algebraically independent over Q, while any three are not (Duverney et al., 2022).

Examples

			0.33589766935710210314766572663122658048546104021373...
		

Crossrefs

Programs

  • Mathematica
    With[{eta = DedekindEta, tau0 = Log[GoldenRatio]*I/Pi}, RealDigits[(Surd[GoldenRatio, 4] / Sqrt[5]) * eta[2*tau0]^2 * eta[6*tau0]/(eta[3*tau0] * eta[4*tau0]), 10, 120][[1]]]
  • PARI
    prodinf(k = 2, 1 - 1/(fibonacci(k-1) + fibonacci(k+1)))

Formula

Equals Product_{k>=2} (1 - 1/A000032(k)).
Equals A371530 / (2*sqrt(5)).
Equals (phi^(1/4) / sqrt(5)) * eta(2*tau_0)^2 * eta(6*tau_0) / (eta(3*tau_0) * eta(4*tau_0)), where phi is the golden ratio (A001622), tau_0 = i*log(phi)/Pi, and i = sqrt(-1) (Duverney et al., 2022).

A086467 Decimal expansion of 2*arccsch(2)^2.

Original entry on oeis.org

4, 6, 3, 1, 2, 9, 6, 4, 1, 1, 5, 4, 3, 8, 8, 7, 8, 4, 9, 9, 3, 8, 5, 8, 1, 4, 2, 4, 6, 3, 0, 6, 5, 5, 2, 0, 0, 3, 2, 8, 1, 2, 7, 0, 0, 0, 9, 8, 5, 9, 7, 7, 4, 1, 6, 3, 0, 6, 0, 2, 4, 5, 7, 3, 7, 9, 5, 9, 0, 6, 9, 1, 1, 3, 3, 9, 2, 3, 6, 2, 5, 9, 7, 0, 1, 0, 9, 0, 9, 4, 1, 7, 2, 7, 7, 6, 7, 9, 0, 1, 1, 1
Offset: 0

Views

Author

Eric W. Weisstein, Jul 21 2003

Keywords

Examples

			0.4631296...
		

Crossrefs

Programs

Formula

Equals Sum_{n>=1} (-1)^(n-1)/n^2/binomial(2*n,n).
Equals Integral_{x=0..1} log(1+x-x^2)/x dx. - Vaclav Kotesovec, Jun 13 2021
Equals 2*A002390^2. - R. J. Mathar, Jun 07 2024

A104287 Decimal expansion of log base phi of 2.

Original entry on oeis.org

1, 4, 4, 0, 4, 2, 0, 0, 9, 0, 4, 1, 2, 5, 5, 6, 4, 7, 9, 0, 1, 7, 5, 5, 1, 4, 9, 9, 5, 8, 7, 8, 6, 3, 8, 0, 2, 4, 5, 8, 6, 0, 4, 1, 4, 2, 6, 8, 4, 0, 5, 6, 0, 8, 1, 6, 4, 5, 4, 4, 1, 7, 2, 9, 5, 6, 6, 5, 1, 3, 2, 8, 4, 3, 5, 2, 9, 9, 0, 3, 6, 7, 2, 7, 9, 5, 2, 8, 2, 2, 0, 4, 9, 7, 3, 5, 7, 5, 9, 1, 6, 3, 1, 2, 7
Offset: 1

Views

Author

Bryan Jacobs (bryanjj(AT)gmail.com), Feb 28 2005

Keywords

Comments

The fractal dimension of the goldpoint snowflake (Turner, 2003). - Amiram Eldar, Jan 11 2022

Examples

			1.4404200904125564790175514995878638024586041426840560816454417295665...
		

References

  • Krassimir Atanassova, Vassia Atanassova, Anthony Shannon and John Turner, New Visual Perspectives on Fibonacci Numbers, World Scientific, 2002, p. 218.

Crossrefs

Programs

Formula

Equals log(2) / log((sqrt(5)+1)/2).
Equals A002162/A002390. - Amiram Eldar, Nov 24 2020

A110609 a(n) = n * binomial(2*n, n-1).

Original entry on oeis.org

0, 1, 8, 45, 224, 1050, 4752, 21021, 91520, 393822, 1679600, 7113106, 29953728, 125550100, 524190240, 2181340125, 9051563520, 37467344310, 154754938800, 637982011590, 2625648168000, 10789623755820, 44277560801760, 181478535620850, 742984788858624, 3038716500907500
Offset: 0

Views

Author

Paul Barry, Jul 30 2005

Keywords

Crossrefs

Column k=1 of A110608.

Programs

  • Magma
    [0] cat [((4*n+4)*(2*n+1)*Binomial(2*n, n)/(n+2))/2: n in [0..25]]; // Vincenzo Librandi, Jan 09 2015
    
  • Maple
    with(combinat):with(combstruct):a[0]:=0:for n from 1 to 30 do a[n]:=sum((count(Composition(n*2+1),size=n)),j=1..n) od: seq(a[n], n=0..22); # Zerinvary Lajos, May 09 2007
    a:=n->sum(sum(binomial(2*n,n)/(n+1), j=1..n),k=1..n): seq(a(n), n=0..22); # Zerinvary Lajos, May 09 2007
    series(simplify(x*diff(x*diff((1-sqrt(1-4*x))/(2*x), x), x)), x, 20):
    seq(coeff(%, x, k), k=0..18); # Karol A. Penson, Apr 25 2025
  • Mathematica
    Table[CatalanNumber[n]*n^2, {n, 0, 22}] (* Zerinvary Lajos, Jul 08 2009 *)
    CoefficientList[Series[x (1 / x^2 - (1 - 6 x + 4 x^2) / ((1 - 4 x)^(3/2) x^2)) / 2, {x, 0, 30}], x] (* Vincenzo Librandi, Jan 09 2015 *)
  • PARI
    for(n=0,25, print1(n*binomial(2*n,n-1), ", ")) \\ G. C. Greubel, Sep 01 2017

Formula

a(n) = n^2*binomial(2*n, n)/(n+1) = n^2*A000108(n) = A002736(n)/(n+1).
G.f.: -(2*x*(2*x+2*sqrt(1-4*x)-3) - sqrt(1-4*x) + 1)/(2*sqrt((1 - 4*x)^3)*x). - Marco A. Cisneros Guevara, Jul 23 2011; amended by Georg Fischer, Apr 09 2020
(n+1)*(10*n-7)*a(n)+2*n*(5*n-88)*a(n-1) -4*(25*n-22)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 07 2012
From Ilya Gutkovskiy, Jan 20 2017: (Start)
E.g.f.: x*(BesselI(0,2*x) + 2*BesselI(1,2*x) + BesselI(2,2*x))*exp(2*x).
a(n) ~ 4^n*sqrt(n)/sqrt(Pi).
Sum_{n>=1} 1/a(n) = Pi*(2*sqrt(3) + Pi)/18 = 1.152911143694148... (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (2/sqrt(5))*log(phi) + 2*log(phi)^2, where log(phi) = A002390. - Amiram Eldar, Feb 20 2021
G.f.: (x*(d/dx))^2 [g.f. of A000108]. - Karol A. Penson, Apr 25 2025

A139346 Decimal expansion of cosine of the golden ratio, negated. That is, the decimal expansion of -cos((1+sqrt(5))/2).

Original entry on oeis.org

0, 4, 7, 2, 2, 0, 0, 9, 6, 2, 5, 4, 3, 5, 9, 8, 3, 3, 7, 6, 6, 8, 7, 8, 6, 9, 4, 0, 4, 8, 7, 9, 4, 5, 6, 5, 4, 9, 5, 5, 4, 8, 9, 9, 4, 7, 2, 7, 3, 4, 2, 7, 8, 1, 3, 2, 8, 1, 8, 2, 1, 9, 8, 2, 7, 8, 3, 5, 3, 3, 0, 1, 1, 6, 7, 0, 6, 3, 5, 9, 5, 5, 6, 3, 6, 8, 1, 2, 3, 8, 9, 8, 2, 3, 3, 2, 2, 6, 0, 5, 3, 2, 2, 8
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			-0.04722009625435983376687869404879456549554899472734...
		

Crossrefs

Programs

Formula

Equals 1/A139349. - Amiram Eldar, Feb 07 2022

Extensions

Edited by N. J. A. Sloane, Dec 11 2008

A145433 Decimal expansion of Sum_{n>=1} (-1)^(n-1)*n/binomial(2n,n).

Original entry on oeis.org

2, 7, 4, 4, 3, 2, 7, 1, 5, 2, 7, 7, 1, 2, 0, 3, 2, 3, 1, 1, 1, 1, 5, 4, 6, 5, 8, 6, 3, 6, 0, 4, 8, 4, 3, 4, 0, 3, 3, 9, 6, 5, 6, 5, 4, 6, 0, 3, 2, 2, 3, 1, 7, 2, 3, 8, 0, 5, 6, 0, 4, 8, 8, 3, 1, 9, 4, 0, 4, 8, 9, 7, 2, 3, 6, 8, 9, 0, 5, 5, 6, 9, 0, 8, 9, 1, 9, 2, 2, 1, 1, 7, 5
Offset: 0

Views

Author

R. J. Mathar, Feb 08 2009

Keywords

Examples

			0.274432715277120323...
		

References

  • Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, (1996), 4.1.39

Crossrefs

Programs

  • Maple
    6/25+4/125*5^(1/2)*ln(1/2+1/2*5^(1/2)) ;
  • Mathematica
    RealDigits[6/25 + 4*Sqrt[5]*Log[GoldenRatio]/125, 10, 93] // First (* Jean-François Alcover, Oct 27 2014 *)
    RealDigits[Hypergeometric2F1[2, 2, 3/2, -1/4]/2, 10, 93] // First (* Vaclav Kotesovec, Oct 27 2014 *)

Formula

Equals 2*(15+2*A002163*A002390)/125.

A371527 Decimal expansion of Product_{k>=2} (1 + (-1)^k/Fibonacci(k)).

Original entry on oeis.org

1, 1, 3, 8, 7, 3, 4, 8, 6, 1, 7, 0, 7, 1, 9, 6, 2, 1, 8, 0, 9, 6, 8, 9, 5, 0, 8, 5, 7, 4, 2, 0, 4, 3, 1, 8, 7, 6, 3, 7, 8, 8, 8, 9, 4, 7, 9, 1, 5, 7, 3, 2, 5, 1, 3, 7, 4, 4, 1, 3, 4, 4, 2, 4, 2, 6, 4, 9, 2, 2, 8, 1, 6, 7, 4, 2, 2, 2, 2, 2, 6, 7, 4, 0, 0, 7, 8, 6, 2, 3, 9, 3, 3, 8, 4, 0, 9, 2, 1, 7, 6, 4, 4, 3, 9
Offset: 1

Views

Author

Amiram Eldar, Mar 26 2024

Keywords

Examples

			1.13873486170719621809689508574204318763788894791573...
		

Crossrefs

Programs

  • Mathematica
    With[{eta = DedekindEta, tau0 = Log[GoldenRatio]*I/Pi}, RealDigits[2 * Sqrt[5] * Surd[GoldenRatio^5, 4] * eta[tau0]^3 * eta[4*tau0]/eta[2*tau0]^2, 10, 120][[1]]]
  • PARI
    prodinf(k = 2, 1 + (-1)^k/fibonacci(k))

Formula

Equals Product_{k>=2} (1 + (-1)^k/A000045(k)).
Equals 6 * A337669.
Equals 2 * sqrt(5) * phi^(5/4) * eta(tau_0)^3 * eta(4*tau_0) / eta(2*tau_0)^2, where phi is the golden ratio (A001622), tau_0 = i*log(phi)/Pi, and i = sqrt(-1) (Duverney et al., 2022).

A371528 Decimal expansion of Product_{k>=3} (1 - (-1)^k/Fibonacci(k)).

Original entry on oeis.org

1, 0, 9, 5, 9, 1, 3, 8, 8, 8, 1, 4, 8, 6, 8, 2, 0, 3, 0, 6, 3, 4, 3, 6, 9, 4, 4, 7, 5, 5, 2, 2, 2, 1, 5, 7, 7, 6, 8, 2, 5, 1, 6, 6, 2, 8, 5, 9, 7, 0, 2, 3, 7, 2, 5, 1, 1, 2, 8, 4, 1, 7, 2, 8, 9, 2, 9, 8, 0, 8, 1, 7, 0, 5, 0, 2, 3, 0, 0, 9, 8, 4, 0, 9, 3, 1, 8, 6, 8, 0, 2, 4, 8, 6, 1, 0, 9, 3, 3, 6, 2, 6, 7, 8, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 26 2024

Keywords

Examples

			1.09591388814868203063436944755222157768251662859702...
		

Crossrefs

Programs

  • Mathematica
    With[{eta = DedekindEta, tau0 = Log[GoldenRatio]*I/Pi}, RealDigits[(Surd[GoldenRatio^5, 4] / 3) * eta[4*tau0]/eta[tau0], 10, 120][[1]]]
  • PARI
    prodinf(k = 3, 1 - (-1)^k/fibonacci(k))

Formula

Equals Product_{k>=2} (1 - (-1)^k/A000045(k)).
Equals A337668 / 12.
Equals (phi^(5/4)/3) * eta(4*tau_0) / eta(tau_0), where phi is the golden ratio (A001622), tau_0 = i*log(phi)/Pi, and i = sqrt(-1) (Duverney et al., 2022).
Previous Showing 21-30 of 73 results. Next