cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A002736 Apéry numbers: a(n) = n^2*C(2n,n).

Original entry on oeis.org

0, 2, 24, 180, 1120, 6300, 33264, 168168, 823680, 3938220, 18475600, 85357272, 389398464, 1757701400, 7862853600, 34901442000, 153876579840, 674412197580, 2940343837200, 12759640231800, 55138611528000, 237371722628040, 1018383898440480
Offset: 0

Views

Author

Keywords

Comments

Let H be the n X n Hilbert matrix H(i,j) = 1/(i+j-1) for 1 <= i,j <= n. Let B be the inverse matrix of H. The sum of the elements in row n-1 of B equals -a(n-1). - T. D. Noe, May 01 2011

References

  • J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933, p. 93.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n^2*Binomial(2*n, n): n in [0..30]]; // Vincenzo Librandi, Aug 08 2014
    
  • Maple
    seq(n^2*binomial(2*n,n), n=0..50); # Robert Israel, Aug 07 2014
  • Mathematica
    CoefficientList[ Series[x (4 x + 2)/(1 - 4 x)^(5/2), {x, 0, 20}], x] (* Robert G. Wilson v, Aug 08 2011 *)
    Table[n^2 Binomial[2n,n],{n,0,30}] (* Harvey P. Dale, Jun 21 2017 *)
  • MuPAD
    combinat::catalan(n)*(n+1)*n^2 $ n = 0..36 // Zerinvary Lajos, Apr 17 2007
    
  • PARI
    my(x='x+O('x^100)); concat(0, Vec(x*(4*x+2)/((1-4*x)^(5/2)))) \\ Altug Alkan, Mar 21 2016
    
  • PARI
    a(n) = n^2*binomial(2*n, n); \\ Michel Marcus, Mar 21 2016
    
  • Sage
    [n^2*(n+1)*catalan_number(n) for n in (0..30)] # G. C. Greubel, Mar 23 2022

Formula

G.f.: x*(4*x+2)/((1-4*x)^(5/2)). - Marco A. Cisneros Guevara, Jul 25 2011
Sum_{n>=1} 1/a(n) = Pi^2/18 (Euler). - Benoit Cloitre, Apr 07 2002
From Ilya Gutkovskiy, Jan 17 2017: (Start)
a(n) ~ 4^n*n^(3/2)/sqrt(Pi).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(phi)^2 = A086467, where phi is the golden ratio. (End)
D-finite with recurrence: (-n+1)*a(n) +2*(n+4)*a(n-1) +4*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jan 21 2020
a(n) = (2n)!/(Gamma(n))^2. - Diego Rattaggi, Mar 30 2020
a(n) = Sum_{k=0..2*n} binomial(2*n,k)*abs(n-k)^3 (Bruckman, 1999; Strazdins, 2000). - Amiram Eldar, Jan 12 2022
Sum_{n>=1} x^n/a(n) = 2*arcsin(sqrt(x)/2)^2, for abs(x) < 4 (Adegoke et al., 2022, section 5, p. 10). - Amiram Eldar, Dec 07 2024
From Peter Bala, Aug 02 2025: (Start)
For n >= 1,
a(n) = 2*n*(2*n-1)/(n-1)^2 * a(n-1) with a(1) = 2 and
1/a(n) = Sum_{k = 0..n} (-1)^(n+k+1) * binomial(n, k)*binomial(n+k, k)/(n+k)^2. (End)
a(n) = 2 * A002544(n-1) for n>=1. - Alois P. Heinz, Aug 03 2025

A086466 Decimal expansion of 2*sqrt(5)/5 arccsch(2).

Original entry on oeis.org

4, 3, 0, 4, 0, 8, 9, 4, 0, 9, 6, 4, 0, 0, 4, 0, 3, 8, 8, 8, 9, 4, 3, 3, 2, 3, 2, 9, 5, 0, 6, 0, 5, 4, 2, 5, 4, 2, 4, 5, 7, 0, 6, 8, 2, 5, 4, 0, 2, 8, 9, 6, 5, 4, 7, 5, 7, 0, 0, 6, 1, 0, 3, 9, 9, 2, 5, 6, 1, 2, 1, 5, 4, 6, 1, 1, 3, 1, 9, 6, 1, 3, 6, 1, 4, 9, 0, 2, 6, 4, 6, 9, 7, 2, 1, 9, 9, 5, 5, 4, 0, 6
Offset: 0

Views

Author

Eric W. Weisstein, Jul 21 2003

Keywords

Comments

Equals the value of the Dirichlet L-series of the non-principal character modulo 5 (A080891) at s=1. - Jianing Song, Nov 16 2019

Examples

			0.43040894096400403888943323295060542542457...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.2, p. 7.

Crossrefs

Programs

  • Mathematica
    2*Log[GoldenRatio]/Sqrt[5] // RealDigits[#, 10, 102]& // First (* Jean-François Alcover, Apr 18 2014 *)
  • PARI
    2*log((1+sqrt(5))/2)/sqrt(5) \\ Stefano Spezia, Oct 15 2024

Formula

Equals Sum_{k>=1} (-1)^(k-1)/(k*binomial(2*k,k)).
Equals A010532 * A002390 / 10. - R. J. Mathar, Jul 26 2010
Also equals f'(0) = 2*log(phi)/sqrt(5), with f(x) = (phi^x-cos(Pi*x)*phi^-x)/sqrt(5), the real Fibonacci interpolating function. - Jean-François Alcover, Apr 04 2014
Equals Sum_{k>=1} A080891(k)/k = Sum_{k>=1} Kronecker(5,k)/k = 1 - 1/2 - 1/3 + 1/4 + 1/6 - 1/7 - 1/8 + 1/9 + ... - Jianing Song, Nov 16 2019
Equals Sum_{k>=1} F(k)/(k*2^(k+1)), where F(k) is the k-th Fibonacci number (A000045). - Amiram Eldar, Aug 10 2020
Sum_{k>=1} (2*k+1)*Lucas(k)/(k*(k+1)*2^k) = 10*c + 2 = 6.3040894096... where c is this constant (Seiffert, 1994). - Amiram Eldar, Jan 15 2022
Equals Sum_{k>=1} F(k)/(k*3^k), where F(k) is the k-th Fibonacci number (A000045). - Amiram Eldar, Jul 02 2023
Equals 1/Product_{p prime} (1 - Kronecker(5,p)/p), where Kronecker(5,p) = 0 if p = 5, 1 if p == 1 or 4 (mod 5) or -1 if p == 2 or 3 (mod 5). - Amiram Eldar, Dec 17 2023
Equals A344041/2. - Hugo Pfoertner, Oct 16 2024

A086465 Decimal expansion of (5 + 4*sqrt(5)*arcsch(2))/25.

Original entry on oeis.org

3, 7, 2, 1, 6, 3, 5, 7, 6, 3, 8, 5, 6, 0, 1, 6, 1, 5, 5, 5, 5, 7, 7, 3, 2, 9, 3, 1, 8, 0, 2, 4, 2, 1, 7, 0, 1, 6, 9, 8, 2, 8, 2, 7, 3, 0, 1, 6, 1, 1, 5, 8, 6, 1, 9, 0, 2, 8, 0, 2, 4, 4, 1, 5, 9, 7, 0, 2, 4, 4, 8, 6, 1, 8, 4, 4, 5, 2, 7, 8, 4, 5, 4, 4, 5, 9, 6, 1, 0, 5, 8, 7, 8, 8, 8, 7, 9, 8, 2
Offset: 0

Views

Author

Eric W. Weisstein, Jul 21 2003

Keywords

Examples

			0.37216357638560161555577...
		

Crossrefs

Programs

  • Maple
    2/625*(14*sqrt(5)*log((1+sqrt(5))/2)+5) ; # R. J. Mathar, Mar 04 2009
  • Mathematica
    RealDigits[(5 + 4*Sqrt[5]*ArcSinh[1/2])/25, 10, 120][[1]] (* Amiram Eldar, May 25 2023 *)
  • PARI
    suminf(n=1, (-1)^(n-1)/binomial(2*n,n)) \\ Michel Marcus, Jul 31 2015
    
  • PARI
    asinh(.5)*sqrt(5)*.16+.2 \\ Use \p99 to get 99 digits. - M. F. Hasler, Jul 31 2015

Formula

Equals Sum_{n>=1} (-1)^(n-1)/binomial(2*n,n).

Extensions

Corrected definition and digits by a factor of 25/24. - R. J. Mathar, Mar 04 2009

A086468 Decimal expansion of 2*zeta(3)/5.

Original entry on oeis.org

4, 8, 0, 8, 2, 2, 7, 6, 1, 2, 6, 3, 8, 3, 7, 7, 1, 4, 1, 5, 9, 8, 9, 5, 2, 6, 4, 6, 0, 4, 5, 7, 9, 9, 9, 6, 3, 0, 5, 9, 9, 4, 5, 1, 6, 9, 3, 6, 1, 9, 9, 5, 5, 2, 7, 1, 6, 9, 0, 8, 6, 2, 2, 1, 3, 6, 7, 3, 5, 2, 8, 2, 3, 1, 4, 5, 2, 5, 2, 3, 6, 0, 7, 4, 5, 8, 2, 3, 4, 9, 4, 4, 3, 7, 3, 4, 1, 0, 3, 2, 5, 8
Offset: 0

Views

Author

Eric W. Weisstein, Jul 21 2003

Keywords

Examples

			0.48082276126383771415989526460457999630599451693620...
		

References

  • Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, (1996), 4.1.46.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 43.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(250)); L:=RiemannZeta();  2*Evaluate(L,3)/5; // G. C. Greubel, Nov 02 2018
  • Mathematica
    First[RealDigits[N[2*Zeta[3]/5, 100]]] (* Stefano Spezia, Nov 02 2018 *)
  • PARI
    2*zeta(3)/5 \\ Michel Marcus, Nov 02 2018
    

Formula

Equals Sum_{n>=1} (-1)^(n-1)/(n^3*binomial(2*n,n)).
Equals 2*A002117/5. - R. J. Mathar, Feb 08 2009
Equals (1/10)*Sum_{k>=1} (30*k - 11)/((2*k - 1)*k^3*binomial(2*k,k)^2) (see Finch). - Stefano Spezia, Nov 01 2024

A339470 Decimal expansion of log(phi)^2, where phi is the golden ratio (A002390^2).

Original entry on oeis.org

2, 3, 1, 5, 6, 4, 8, 2, 0, 5, 7, 7, 1, 9, 4, 3, 9, 2, 4, 9, 6, 9, 2, 9, 0, 7, 1, 2, 3, 1, 5, 3, 2, 7, 6, 0, 0, 1, 6, 4, 0, 6, 3, 5, 0, 0, 4, 9, 2, 9, 8, 8, 7, 0, 8, 1, 5, 3, 0, 1, 2, 2, 8, 6, 8, 9, 7, 9, 5, 3, 4, 5, 5, 6, 6, 9, 6, 1, 8, 1, 2, 9, 8, 5, 0, 5, 4
Offset: 0

Views

Author

Robert Bilinski, Dec 06 2020

Keywords

Examples

			0.2315648205771943924969290712315327600164063500492988708153012286...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[GoldenRatio]^2, 10, 100][[1]] (* Amiram Eldar, Dec 06 2020 *)
  • PARI
    asinh(1/2)^2 \\ Michel Marcus, Dec 06 2020

Formula

Equals arcsinh(1/2)^2 = A002390^2.
Equals (1/2)*Sum_{k>=1} ((k!)^2*(-1)^(k+1))/((2*k)!*k^2) = A086467/2.
Equals (1/3)*(zeta(2) - Sum_{k>=1} ((k!)^2*(-1)^k)/((2*k)!*(2*k+1)^2)).
Equals (1/2)*Sum_{k>=1} (-1)^(k+1)/A002736(k).
Showing 1-5 of 5 results.