cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A002390 Decimal expansion of natural logarithm of golden ratio.

Original entry on oeis.org

4, 8, 1, 2, 1, 1, 8, 2, 5, 0, 5, 9, 6, 0, 3, 4, 4, 7, 4, 9, 7, 7, 5, 8, 9, 1, 3, 4, 2, 4, 3, 6, 8, 4, 2, 3, 1, 3, 5, 1, 8, 4, 3, 3, 4, 3, 8, 5, 6, 6, 0, 5, 1, 9, 6, 6, 1, 0, 1, 8, 1, 6, 8, 8, 4, 0, 1, 6, 3, 8, 6, 7, 6, 0, 8, 2, 2, 1, 7, 7, 4, 4, 1, 2, 0, 0, 9, 4, 2, 9, 1, 2, 2, 7, 2, 3, 4, 7, 4
Offset: 0

Views

Author

Keywords

Comments

The Baxa article proves that every gamma >= this constant is the Lévy constant of a transcendental number. - Michel Marcus, Apr 09 2016
The entropy of the golden mean shift. See Capobianco link. - Michel Marcus, Jan 19 2019
Also the limiting value of the area of the function y = 1/x bounded by the abscissa of consecutive F(n) points (where F(n)=A000045(n) are the Fibonacci numbers and n > 0). - Burak Muslu, May 09 2021

Examples

			0.481211825059603447497758913424368423135184334385660519661...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 236.
  • W. E. Mansell, Tables of Natural and Common Logarithms. Royal Society Mathematical Tables, Vol. 8, Cambridge Univ. Press, 1964, p. XVIII.
  • B. Muslu, Sayılar ve Bağlantılar 2, Luna, 2021, pages 31-38.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

Also equals arcsinh(1/2).
Equals sqrt(5)* A086466 /2. - Seiichi Kirikami, Aug 20 2011
Equals sqrt(5)*(5* A086465 -1)/4. - Jean-François Alcover, Apr 29 2013
Also equals (125*C - 55) / (24*sqrt(5)), where C = Sum_{k>=1} (-1)^(k+1)*1/Cat(k), where Cat(k) = (2k)!/k!/(k+1)! = A000108(k) - k-th Catalan number. See Sep 01 2006 comment at ref. Mathematics in Russian. - Alexander Adamchuk, Dec 27 2013
Equals sqrt(5)/4 * Sum_{n>=0} (-1)^n/((2n+1)*C(2*n,n)) = sqrt(5) *A344041 /4. - Alexander Adamchuk, Dec 27 2013
Equals sqrt((Pi^2/6 - W)/3), where W = Sum_{n>=0} (-1)^n/((2n+1)^2*C(2*n,n)) = A145436, attributed by Alexander Adamchuk to Ramanujan. See Sep 01 2006 comment at ref. Mathematics in Russian. - Alexander Adamchuk, Dec 27 2013
Equals lim_{j->infinity} Sum_{k=F(j)..F(j+1)-1} (1/k), where F = A000045, the Fibonacci sequence. Convergence is slow. For example: Sum_{k=21..33} (1/k) = 0.4910585.... - Richard R. Forberg, Aug 15 2014
Equals Sum_{k>=1} cos(Pi*k/5)/k. - Amiram Eldar, Aug 12 2020
Equals real solution to exp(x)+exp(2*x) = exp(3*x). - Alois P. Heinz, Jul 14 2022
Equals arccoth(sqrt(5)). - Amiram Eldar, Feb 09 2024
Sum_{n >= 1} 1/(n*P(n, sqrt(5))*P(n-1, sqrt(5))), where P(n, x) denotes the n-th Legendre polynomial. The first ten terms of the series gives the approximation log((1 + sqrt(5))/2) = 0.481211825059(39..), correct to 12 decimal places. - Peter Bala, Mar 16 2024
Equals Sum_{n>=0} ((-1)^(n)*binomial(2*n, n))/(2^(4*n + 1)*(2*n + 1)). - Antonio Graciá Llorente, Nov 13 2024

A086466 Decimal expansion of 2*sqrt(5)/5 arccsch(2).

Original entry on oeis.org

4, 3, 0, 4, 0, 8, 9, 4, 0, 9, 6, 4, 0, 0, 4, 0, 3, 8, 8, 8, 9, 4, 3, 3, 2, 3, 2, 9, 5, 0, 6, 0, 5, 4, 2, 5, 4, 2, 4, 5, 7, 0, 6, 8, 2, 5, 4, 0, 2, 8, 9, 6, 5, 4, 7, 5, 7, 0, 0, 6, 1, 0, 3, 9, 9, 2, 5, 6, 1, 2, 1, 5, 4, 6, 1, 1, 3, 1, 9, 6, 1, 3, 6, 1, 4, 9, 0, 2, 6, 4, 6, 9, 7, 2, 1, 9, 9, 5, 5, 4, 0, 6
Offset: 0

Views

Author

Eric W. Weisstein, Jul 21 2003

Keywords

Comments

Equals the value of the Dirichlet L-series of the non-principal character modulo 5 (A080891) at s=1. - Jianing Song, Nov 16 2019

Examples

			0.43040894096400403888943323295060542542457...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.2, p. 7.

Crossrefs

Programs

  • Mathematica
    2*Log[GoldenRatio]/Sqrt[5] // RealDigits[#, 10, 102]& // First (* Jean-François Alcover, Apr 18 2014 *)
  • PARI
    2*log((1+sqrt(5))/2)/sqrt(5) \\ Stefano Spezia, Oct 15 2024

Formula

Equals Sum_{k>=1} (-1)^(k-1)/(k*binomial(2*k,k)).
Equals A010532 * A002390 / 10. - R. J. Mathar, Jul 26 2010
Also equals f'(0) = 2*log(phi)/sqrt(5), with f(x) = (phi^x-cos(Pi*x)*phi^-x)/sqrt(5), the real Fibonacci interpolating function. - Jean-François Alcover, Apr 04 2014
Equals Sum_{k>=1} A080891(k)/k = Sum_{k>=1} Kronecker(5,k)/k = 1 - 1/2 - 1/3 + 1/4 + 1/6 - 1/7 - 1/8 + 1/9 + ... - Jianing Song, Nov 16 2019
Equals Sum_{k>=1} F(k)/(k*2^(k+1)), where F(k) is the k-th Fibonacci number (A000045). - Amiram Eldar, Aug 10 2020
Sum_{k>=1} (2*k+1)*Lucas(k)/(k*(k+1)*2^k) = 10*c + 2 = 6.3040894096... where c is this constant (Seiffert, 1994). - Amiram Eldar, Jan 15 2022
Equals Sum_{k>=1} F(k)/(k*3^k), where F(k) is the k-th Fibonacci number (A000045). - Amiram Eldar, Jul 02 2023
Equals 1/Product_{p prime} (1 - Kronecker(5,p)/p), where Kronecker(5,p) = 0 if p = 5, 1 if p == 1 or 4 (mod 5) or -1 if p == 2 or 3 (mod 5). - Amiram Eldar, Dec 17 2023
Equals A344041/2. - Hugo Pfoertner, Oct 16 2024

A086467 Decimal expansion of 2*arccsch(2)^2.

Original entry on oeis.org

4, 6, 3, 1, 2, 9, 6, 4, 1, 1, 5, 4, 3, 8, 8, 7, 8, 4, 9, 9, 3, 8, 5, 8, 1, 4, 2, 4, 6, 3, 0, 6, 5, 5, 2, 0, 0, 3, 2, 8, 1, 2, 7, 0, 0, 0, 9, 8, 5, 9, 7, 7, 4, 1, 6, 3, 0, 6, 0, 2, 4, 5, 7, 3, 7, 9, 5, 9, 0, 6, 9, 1, 1, 3, 3, 9, 2, 3, 6, 2, 5, 9, 7, 0, 1, 0, 9, 0, 9, 4, 1, 7, 2, 7, 7, 6, 7, 9, 0, 1, 1, 1
Offset: 0

Views

Author

Eric W. Weisstein, Jul 21 2003

Keywords

Examples

			0.4631296...
		

Crossrefs

Programs

Formula

Equals Sum_{n>=1} (-1)^(n-1)/n^2/binomial(2*n,n).
Equals Integral_{x=0..1} log(1+x-x^2)/x dx. - Vaclav Kotesovec, Jun 13 2021
Equals 2*A002390^2. - R. J. Mathar, Jun 07 2024

A086468 Decimal expansion of 2*zeta(3)/5.

Original entry on oeis.org

4, 8, 0, 8, 2, 2, 7, 6, 1, 2, 6, 3, 8, 3, 7, 7, 1, 4, 1, 5, 9, 8, 9, 5, 2, 6, 4, 6, 0, 4, 5, 7, 9, 9, 9, 6, 3, 0, 5, 9, 9, 4, 5, 1, 6, 9, 3, 6, 1, 9, 9, 5, 5, 2, 7, 1, 6, 9, 0, 8, 6, 2, 2, 1, 3, 6, 7, 3, 5, 2, 8, 2, 3, 1, 4, 5, 2, 5, 2, 3, 6, 0, 7, 4, 5, 8, 2, 3, 4, 9, 4, 4, 3, 7, 3, 4, 1, 0, 3, 2, 5, 8
Offset: 0

Views

Author

Eric W. Weisstein, Jul 21 2003

Keywords

Examples

			0.48082276126383771415989526460457999630599451693620...
		

References

  • Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, (1996), 4.1.46.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 43.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(250)); L:=RiemannZeta();  2*Evaluate(L,3)/5; // G. C. Greubel, Nov 02 2018
  • Mathematica
    First[RealDigits[N[2*Zeta[3]/5, 100]]] (* Stefano Spezia, Nov 02 2018 *)
  • PARI
    2*zeta(3)/5 \\ Michel Marcus, Nov 02 2018
    

Formula

Equals Sum_{n>=1} (-1)^(n-1)/(n^3*binomial(2*n,n)).
Equals 2*A002117/5. - R. J. Mathar, Feb 08 2009
Equals (1/10)*Sum_{k>=1} (30*k - 11)/((2*k - 1)*k^3*binomial(2*k,k)^2) (see Finch). - Stefano Spezia, Nov 01 2024

A378807 Decimal expansion of Sum_{k>=1} (-1)^k/binomial(4*k, k) (negated).

Original entry on oeis.org

2, 1, 8, 3, 3, 9, 5, 4, 7, 1, 7, 7, 9, 3, 4, 4, 3, 6, 8, 7, 0, 9, 9, 8, 3, 2, 1, 0, 2, 7, 8, 8, 5, 3, 9, 1, 9, 8, 3, 0, 4, 8, 6, 4, 0, 2, 9, 2, 2, 6, 2, 2, 7, 0, 0, 1, 3, 2, 5, 6, 8, 5, 4, 9, 8, 0, 6, 6, 7, 9, 6, 6, 1, 3, 5, 9, 0, 4, 2, 7, 6, 1, 3, 1, 7, 0, 9, 3, 7, 4, 0, 2, 9, 0, 7, 9, 6, 3, 9, 3, 9, 6, 3, 3, 2
Offset: 0

Views

Author

Amiram Eldar, Dec 07 2024

Keywords

Examples

			-0.21833954717793443687099832102788539198304864029226...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[HypergeometricPFQ[{1, 4/3, 5/3, 2}, {5/4, 3/2, 7/4}, -27/256]/ 4, 10, 120][[1]]

Formula

Equals 4F3(1, 4/3, 5/3, 2; 5/4, 3/2, 7/4; -27/256) / 4, where 4F3 is a generalized hypergeometric function.
Equals 27*d^2/((d^2-4)*(2*d^2+1)^2) + (3*d*(d^2-1)*(2*d^2-1)/(2*(2*d^2+1)^3)) * log(abs((d-1)/(d+1))) + (3*(d^2-1)*(2*d^4-2*d^3-7*d^2-3*d+1)/(4*d*(2*d^2+1)^3)) * (d/(d+2))^(3/2) * arctan(2*sqrt(d^2+2*d)/(d^2+2*d-1)) - (3*(d^2-1)*(2*d^4+2*d^3-7*d^2+3*d+1)/(4*d*(2*d^2+1)^3)) * (d/(d-2))^(3/2) * arctan(2*sqrt(d^2-2*d)/(d^2-2*d-1)), where d = sqrt(1 - (8/sqrt(3))*(((3*sqrt(3)+sqrt(283))/16)^(1/3) - (((3*sqrt(3)+sqrt(283))/16)^(-1/3)))) (Batir and Sofo, 2013, pp. 336-337, Example 4).

A307086 Decimal expansion of 4*(5 - sqrt(5)*log(phi))/25, where phi is the golden ratio (A001622).

Original entry on oeis.org

6, 2, 7, 8, 3, 6, 4, 2, 3, 6, 1, 4, 3, 9, 8, 3, 8, 4, 4, 4, 4, 2, 2, 6, 7, 0, 6, 8, 1, 9, 7, 5, 7, 8, 2, 9, 8, 3, 0, 1, 7, 1, 7, 2, 6, 9, 8, 3, 8, 8, 4, 1, 3, 8, 0, 9, 7, 1, 9, 7, 5, 5, 8, 4, 0, 2, 9, 7, 5, 5, 1, 3, 8, 1, 5, 5, 4, 7, 2, 1, 5, 4, 5, 5, 4, 0, 3, 8, 9, 4, 1, 2, 1, 1, 1, 2, 0, 1, 7, 8, 3, 7, 4, 6, 7, 7, 8, 2, 8, 8, 6, 7, 0, 2, 9, 3, 8, 5, 7, 4
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 23 2019

Keywords

Comments

Decimal expansion of the alternating sum of the reciprocals of the central binomial coefficients (A000984).

Examples

			1/1 - 1/2 + 1/6 - 1/20 + 1/70 - 1/252 + ... = 0.62783642361439838444422670681975782983017172698388...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[4 (5 - Sqrt[5] Log[GoldenRatio])/25, 10, 120][[1]]
  • PARI
    4*(5 - sqrt(5)*log((sqrt(5)+1)/2))/25 \\ Charles R Greathouse IV, May 15 2019

Formula

Equals Sum_{k>=0} (-1)^k/binomial(2*k,k).
Equals Sum_{k>=0} (-1)^k*(k!)^2/(2*k)!.
Showing 1-6 of 6 results.