cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 69 results. Next

A153459 Decimal expansion of log_3 (6).

Original entry on oeis.org

1, 6, 3, 0, 9, 2, 9, 7, 5, 3, 5, 7, 1, 4, 5, 7, 4, 3, 7, 0, 9, 9, 5, 2, 7, 1, 1, 4, 3, 4, 2, 7, 6, 0, 8, 5, 4, 2, 9, 9, 5, 8, 5, 6, 4, 0, 1, 3, 1, 8, 8, 0, 4, 2, 7, 8, 7, 0, 6, 5, 4, 9, 4, 3, 8, 3, 8, 6, 8, 5, 2, 0, 1, 3, 8, 0, 9, 1, 4, 8, 0, 5, 0, 6, 1, 1, 7, 2, 6, 8, 8, 5, 4, 9, 4, 5, 1, 7, 4
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Comments

Equals the Hausdorff dimension of Pascal's triangle modulo 3 (A083093). In general, the dimension of Pascal's triangle modulo a prime p is log(p*(p+1)/2) / log(p) (see Reiter link, theorem 2 page 117). - Bernard Schott, Dec 01 2022

Examples

			1.6309297535714574370995271143427608542995856401318804278706...
		

Crossrefs

Programs

Formula

Equals A016629 / A002391 = 1 + A102525. - Bernard Schott, Dec 01 2022

A254620 a(n) = 9^n*(2*n + 1)!/n!.

Original entry on oeis.org

1, 54, 4860, 612360, 99202320, 19642059360, 4596241890240, 1240985310364800, 379741504971628800, 129871594700297049600, 49091462796712284748800, 20323865597838885886003200, 9145739519027498648701440000, 4444829406247364343268899840000
Offset: 0

Views

Author

Peter Bala, Feb 03 2015

Keywords

Crossrefs

Programs

  • Maple
    seq(9^n*(2*n + 1)!/n!, n = 0..14);
  • Mathematica
    Table[9^n (2n+1)!/n!,{n,0,20}] (* Harvey P. Dale, Aug 13 2019 *)

Formula

E.g.f.: 1/(1 - 36*x)^(3/2) = 1 + 54*x + 4860*x^2/2! + 612360*x^3/3! + ....
Recurrence equation: a(n) = 18*(2*n + 1)*a(n-1) with a(0) = 1.
2nd order recurrence equation: a(n) = (40*n + 16)*a(n-1) - 36*(2*n - 1)^2*a(n-2) with a(0) = 1, a(1) = 54.
Define a sequence b(n) := a(n)*sum {k = 0..n} 1/((2*k + 1)*9^k) beginning [1, 56, 5052, 636672, 103142544, 20422253952, 4778808090048, ...]. It is not difficult to check that b(n) also satisfies the previous 2nd order recurrence equation (and so is an integer sequence). Using this observation we obtain the continued fraction expansion log(2) = 2/3*Sum {k >= 0} 1/((2*k + 1)*9^k) = 2/3*(1 + 2/(54 - 36*3^2/(96 - 36*5^2/(136 - ... - 36*(2*n - 1)^2/((40*n + 16) - ... ))))).
Alternative 2nd order recurrence equation: a(n) = (32*n + 20)*a(n-1) + 36*(2*n - 1)^2*a(n-2) with a(0) = 1, a(1) = 54.
Define now a sequence c(n) := a(n)*sum {k = 0..n} (-1)^k/((2*k + 1)*9^k) beginning [1, 52, 4692, 591072, 95755344, 18959527872, 4436530187328, ...], which, along with a(n), satisfies the alternative 2nd order recurrence equation. From this observation we find the continued fraction expansion arctan(1/3) = 1/3*Sum {k >= 0} (-1)^k/((2*k + 1)*9^k) = 1/3*(1 - 2/(54 + 36*3^2/(84 + 36*5^2/(116 + ... + 36*(2*n - 1)^2/((32*n + 20) + ... ))))). Cf. A254381 and A254619.

A325752 First term of n-th difference sequence of (floor(r*k)), r = log(3), k >= 0.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -11, 66, -286, 1001, -3003, 8008, -19448, 43758, -92378, 184757, -352737, 646877, -1145837, 1971882, -3321890, 5541965, -9324315, 16231215, -30045015, 60090031, -129024511, 290305576, -665732936, 1523150156, -3431847188
Offset: 1

Views

Author

Clark Kimberling, Jun 07 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[First[Differences[Table[Floor[n*Log[3]], {n, 0, 50}], n]], {n, 1, 50}]

A382778 Decimal expansion of 6*log(3)/(3*log(3) - 3).

Original entry on oeis.org

2, 2, 2, 8, 1, 4, 4, 7, 9, 5, 1, 4, 9, 4, 3, 2, 1, 5, 6, 0, 3, 9, 6, 2, 0, 6, 7, 4, 1, 5, 8, 5, 8, 5, 3, 2, 3, 3, 4, 6, 8, 9, 2, 4, 9, 0, 7, 8, 1, 5, 0, 1, 3, 5, 9, 1, 8, 8, 5, 6, 5, 3, 2, 7, 9, 8, 9, 9, 4, 6, 4, 4, 9, 3, 5, 9, 3, 4, 0, 1, 4, 5, 4, 5, 5, 6, 3, 5, 2, 3, 0, 4, 4, 7, 4, 9, 9, 4, 4, 6
Offset: 2

Views

Author

Stefano Spezia, May 11 2025

Keywords

Comments

Upper bound for the irrationality measure of 3-adic analog of zeta(3) (see Lai et al., 2025 at p. 3).

Examples

			22.2814479514943215603962067415858532334689249078...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[6Log[3]/(3Log[3]-3),10,100][[1]]

A386736 Decimal expansion of Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} {1/(x+y+z)}^2 dx dy dz, where {} denotes fractional part.

Original entry on oeis.org

3, 8, 8, 5, 4, 7, 7, 2, 2, 3, 5, 4, 0, 3, 9, 3, 2, 8, 6, 7, 2, 2, 9, 8, 1, 2, 9, 9, 5, 5, 2, 3, 6, 4, 3, 1, 1, 7, 9, 8, 7, 3, 1, 0, 0, 4, 3, 5, 4, 0, 0, 2, 8, 2, 9, 3, 2, 0, 2, 5, 4, 2, 5, 2, 6, 2, 5, 7, 1, 2, 3, 9, 4, 6, 4, 0, 8, 9, 0, 6, 5, 6, 7, 7, 6, 5, 1, 9, 0, 1, 8, 3, 2, 4, 6, 6, 8, 6, 4, 9, 7, 9, 7, 3, 1
Offset: 0

Views

Author

Amiram Eldar, Aug 01 2025

Keywords

Examples

			0.3885477223540393286722981299552364311798731004354002...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[6*Log[2] - 3*Log[3] - (Zeta[2] + Zeta[3])/6, 10, 120][[1]]
  • PARI
    6*log(2) - 3*log(3) -(zeta(2) + zeta(3))/6

Formula

Equals 6*log(2) - 3*log(3) -(zeta(2) + zeta(3))/6.

A386737 Decimal expansion of Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} {1/(x+y+z)}^3 dx dy dz, where {} denotes fractional part.

Original entry on oeis.org

2, 7, 6, 0, 6, 7, 8, 7, 3, 8, 0, 4, 7, 1, 4, 7, 9, 4, 5, 8, 3, 7, 9, 1, 5, 7, 2, 6, 5, 2, 7, 1, 5, 4, 8, 8, 9, 2, 3, 8, 4, 6, 8, 8, 5, 3, 7, 5, 9, 1, 3, 9, 5, 5, 5, 5, 0, 8, 4, 2, 0, 5, 1, 9, 0, 3, 4, 1, 4, 6, 1, 5, 0, 3, 4, 0, 7, 7, 6, 7, 4, 4, 0, 3, 3, 8, 9, 4, 8, 4, 5, 0, 9, 8, 6, 9, 0, 8, 5, 6, 3, 9, 9, 6, 6
Offset: 0

Views

Author

Amiram Eldar, Aug 01 2025

Keywords

Examples

			0.27606787380471479458379157265271548892384688537591...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[3]/2 - 3*Log[2]/2 + 5/3 - EulerGamma/2 - Zeta[2]/4 - Zeta[3]/6, 10, 120][[1]]
  • PARI
    log(3)/2 - 3*log(2)/2 + 5/3 - Euler/2 - zeta(2)/4 - zeta(3)/6

Formula

Equals log(3)/2 - 3*log(2)/2 + 5/3 - gamma/2 - zeta(2)/4 - zeta(3)/6.

A059181 Engel expansion of log(3) = 1.09861... .

Original entry on oeis.org

1, 11, 12, 60, 108, 139, 176, 1228, 1356, 3166, 14807, 81596, 116387, 1367315, 4408018, 11560054, 15330821, 448349063, 574897948, 613663772, 636869505, 999446566, 3786082000, 6911150147, 19780703830, 25945009665, 33227233233, 103529753474, 118556676397
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A002391.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[Log[3], 7!], 100] (* Modified by G. C. Greubel, Dec 27 2016 *)

A068433 Expansion of log(3) in base 2.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1
Offset: 1

Views

Author

Benoit Cloitre, Mar 09 2002

Keywords

Examples

			The decimal expansion is log(3) = 1.098612288668109...
		

Crossrefs

Cf. A002391.

Programs

  • JavaScript
    function binaryExp(n) {
    x = new Array();
    for (i = 0; i < 50; i++) if (n - Math.pow(2, 1 - i) >= 0) {n -= Math.pow(2, 1 - i); x[i] = 1;} else x[i] = 0;
    return x;
    }
    document.write(Math.log(3) + "
    "); document.write(binaryExp(Math.log(3))); // Jon Perry, Nov 18 2012
  • Mathematica
    RealDigits[Log[3], 2, 108][[1]] (* Alonso del Arte, Feb 17 2013 *)
  • PARI
    concat(binary(log(3))) \\ Michel Marcus, Dec 14 2017

A157024 a(0)=1, a(n) = (3n-1)*3n*(3n+1)/2 for n>0.

Original entry on oeis.org

1, 12, 105, 360, 858, 1680, 2907, 4620, 6900, 9828, 13485, 17952, 23310, 29640, 37023, 45540, 55272, 66300, 78705, 92568, 107970, 124992, 143715, 164220, 186588, 210900, 237237, 265680, 296310, 329208, 364455, 402132, 442320, 485100, 530553, 578760, 629802
Offset: 0

Views

Author

Jaume Oliver Lafont, Feb 21 2009

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,((3n)(3n-1)(3n+1))/2}; NestList[nxt,{0,1},40][[All,2]]/.(0->Nothing) (* Harvey P. Dale, Sep 24 2016 *)

Formula

Sum_{n>=0} 1/a(n) = log(3).
G.f.: (1+8x+63x^2+8x^3+x^4)/(1-x)^4.
a(n) = A027480(3n-1), n>0. - R. J. Mathar, Apr 07 2009
Sum_{n>=0} (-1)^n/a(n) = 4*log(2)/3. - Amiram Eldar, Feb 27 2022

A293812 Decimal expansion of log(3)/log(1 + sqrt(2)).

Original entry on oeis.org

1, 2, 4, 6, 4, 7, 7, 4, 3, 5, 7, 2, 9, 8, 1, 5, 8, 4, 1, 8, 9, 1, 0, 0, 4, 2, 4, 8, 7, 4, 8, 1, 5, 1, 8, 3, 9, 9, 6, 1, 0, 5, 5, 3, 0, 0, 0, 3, 3, 7, 6, 4, 1, 7, 7, 9, 6, 8, 4, 5, 1, 9, 3, 3, 5, 4, 4, 5, 6, 4, 4, 5, 7, 3, 4, 3, 7, 8, 0, 5, 1, 4, 4, 8, 2, 1, 6, 6, 2, 4, 3, 8, 7, 9, 0, 6, 9, 7, 5, 6, 5, 2, 6, 1, 7
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 16 2017

Keywords

Comments

Fractal dimension of the frontier of the Fibonacci word fractal.

Examples

			1.24647743572981584189100424874815183996105530003376417796845193354456...
		

Crossrefs

Equals A002391 / A091648.

Programs

  • Magma
    SetDefaultRealField(RealField(105)); n:=Log(1+Sqrt(2),3); Reverse(Intseq(Floor(10^104*n)));
    
  • Maple
    evalf(log(3)/log(1+sqrt(2)),110); # Muniru A Asiru, Oct 11 2018
  • Mathematica
    RealDigits[Log[3]/Log[1 + Sqrt[2]], 10, 100][[1]] (* G. C. Greubel, Oct 10 2018 *)
  • PARI
    log(3)/log(1+sqrt(2))
Previous Showing 51-60 of 69 results. Next