cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A000819 E.g.f.: cos(x)^2 / cos(2x) = Sum_{n >= 0} a(n) * x^(2n) / (2n)!.

Original entry on oeis.org

1, 2, 40, 1952, 177280, 25866752, 5535262720, 1633165156352, 635421069967360, 315212388819402752, 194181169538675507200, 145435130631317935357952, 130145345400688287667978240, 137139396592145493713802493952
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 2*x + 40*x^2 + 1952*x^3 + 177280*x^4 + 25866752*x^5 + ... - _Michael Somos_, Apr 04 2017
		

Crossrefs

Essentially the same as A000816.
Second column of array A103905.

Programs

  • Mathematica
    With[{nn=30},Take[CoefficientList[Series[Cos[x]^2/Cos[2x],{x,0,nn}],x] Range[ 0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Jul 06 2014 *)
    a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, m! SeriesCoefficient[ 1 / (1 - Tan[x]^2), {x, 0, m}]]]; (* Michael Somos, Apr 04 2017 *)
  • PARI
    {a(n) = my(m); if( n<0, 0, m = 2*n; m! * polcoeff( 1 / (1 - tan(x + x * O(x^m))^2), m))}; /* Michael Somos, Apr 04 2017 */

Formula

E.g.f.: cos(x)^2/cos(2x)=1/Q(0)+1/2; Q(k)=1+1/(1-2*(x^2)/(2*(x^2)-(k+1)*(2k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2011
From Michael Somos, Apr 04 2017: (Start)
E.g.f.: cos(x)^2 / cos(2*x) = (1 + sec(2*x)) / 2 = tan(2*x) / (2 * tan(x)) = 1 / (1 - tan(x)^2).
a(n) = A000816(n) unless n=0.
a(n) = 1/2 * A002436(n) unless n=0.
a(n) = 2^(2*n - 1) * A000364(n). (End)

A117437 Expansion of e.g.f.: exp(x)*sec(2*x).

Original entry on oeis.org

1, 1, 5, 13, 105, 441, 5165, 30213, 469585, 3529201, 68525525, 629401213, 14664091065, 159175688361, 4326609913085, 54189700721013, 1683369010256545, 23894940183997921, 835066388382183845, 13248060325188261613
Offset: 0

Views

Author

Paul Barry, Mar 16 2006

Keywords

Comments

Row sums of A117436.
Binomial transform of A002436 (with interpolated zeros).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(x)*Sec(2*x) ))); // G. C. Greubel, May 31 2021
    
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x]Sec[2x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Dec 13 2011 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(x)/cos(2*x))) \\ Michel Marcus, Jun 01 2021
  • Sage
    [factorial(n)*( exp(x)*sec(2*x) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, May 31 2021
    

Formula

a(n) ~ n! * 2^(2*n+1) * (exp(Pi/4) + (-1)^n*exp(-Pi/4)) / Pi^(n+1). - Vaclav Kotesovec, Aug 04 2014

A291260 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - 2^k*x/(1 - 4^k*x/(1 - 6^k*x/(1 - 8^k*x/(1 - 10^k*x/(1 - ...)))))).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 4, 12, 5, 1, 8, 80, 120, 14, 1, 16, 576, 3904, 1680, 42, 1, 32, 4352, 152064, 354560, 30240, 132, 1, 64, 33792, 6492160, 99422208, 51733504, 665280, 429, 1, 128, 266240, 290488320, 31832735744, 130292416512, 11070525440, 17297280, 1430
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 21 2017

Keywords

Examples

			Square array begins:
:  1,     1,        1,            1,               1, ...
:  1,     2,        4,            8,              16, ...
:  2,    12,       80,          576,            4352, ...
:  5,   120,     3904,       152064,         6492160, ...
: 14,  1680,   354560,     99422208,     31832735744, ...
: 42, 30240, 51733504, 130292416512, 390365719822336, ...
		

Crossrefs

Columns k=0-2 give A000108, A001813, A002436.
Main diagonal gives A291331.
Cf. A000079 (row 1), A063481 (row 2), A290569, A291261.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-(2 i)^k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 8}, {n, 0, j}] // Flatten

Formula

G.f. of column k: 1/(1 - 2^k*x/(1 - 4^k*x/(1 - 6^k*x/(1 - 8^k*x/(1 - 10^k*x/(1 - ...)))))), a continued fraction.

A138076 Triangle read by rows: T(n, k) = (-1)^(n+k) * A060187(n+1, k+1).

Original entry on oeis.org

1, -1, 1, 1, -6, 1, -1, 23, -23, 1, 1, -76, 230, -76, 1, -1, 237, -1682, 1682, -237, 1, 1, -722, 10543, -23548, 10543, -722, 1, -1, 2179, -60657, 259723, -259723, 60657, -2179, 1, 1, -6552, 331612, -2485288, 4675014, -2485288, 331612, -6552, 1, -1, 19673, -1756340, 21707972, -69413294, 69413294, -21707972, 1756340, -19673, 1
Offset: 0

Views

Author

Roger L. Bagula, Nov 26 2009

Keywords

Comments

Former name: A signed version of A060187 obtained by taking the Z-transform of p(t,x) = exp(t*(1+2*x)). - G. C. Greubel, Jul 21 2024

Examples

			Triangle begins as:
   1;
  -1,     1;
   1,    -6,      1;
  -1,    23,    -23,        1;
   1,   -76,    230,      -76,       1;
  -1,   237,  -1682,     1682,    -237,        1;
   1,  -722,  10543,   -23548,   10543,     -722,      1;
  -1,  2179, -60657,   259723, -259723,    60657,  -2179,     1;
   1, -6552, 331612, -2485288, 4675014, -2485288, 331612, -6552, 1;
		

Crossrefs

Programs

  • Magma
    A060187:= func< n,k | (&+[(-1)^(k-j)*Binomial(n, k-j)*(2*j-1)^(n-1): j in [1..k]]) >;
    A138076:= func< n,k | (-1)^(n+k)*A060187(n+1,k+1) >;
    [A138076(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 21 2024
    
  • Mathematica
    p[t_] = Exp[t]*x/(Exp[2*t] + x);
    Table[CoefficientList[(n!*(1+x)^(n+1)/x)*SeriesCoefficient[Series[p[ t], {t,0,30}], n], x], {n,0,12}]//Flatten
  • SageMath
    @CachedFunction
    def t(n,k): # t = A060187
        if k==1 or k==n: return 1
        return (2*(n-k)+1)*t(n-1, k-1) + (2*k-1)*t(n-1, k)
    def A138076(n,k): return (-1)^(n+k)*t(n+1,k+1)
    flatten([[A138076(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 21 2024

Formula

T(n, k) = (-1)^(n+k) * A060187(n+1, k+1).
From G. C. Greubel, Jul 21 2024: (Start)
T(2*n, n) = (-1)^n * A177043(n).
Sum_{k=0..n} T(n, k) = (1/2)*(1 + (-1)^n)*(-1)^floor((n+ 1)/2) * A002436(floor(n/2)).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n * A000165(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = (-1)^n * A178118(n+1). (End)

A335257 Numerators of expansion of arctanh(tan(x)) (odd powers only).

Original entry on oeis.org

1, 2, 2, 244, 554, 202084, 166324, 1594887848, 456270874, 9619518701764, 59259390118004, 554790995145103208, 954740563911205348, 32696580074344991138888, 3636325637469705598456, 7064702291984369672858925136, 4176926860695042104392112698
Offset: 1

Views

Author

Denis Roegel, May 28 2020

Keywords

Comments

The numerators of a series used by Johann Heinrich Lambert (1728-1777) in expressing the relationship between a circular sector and a hyperbolic sector.

Examples

			arctan(tanh(x)) = x - 2/3*x^3 + 2/3*x^5 - 244/315*x^7 + 554/567*x^9 ...
arctanh(tan(x)) = x + 2/3*x^3 + 2/3*x^5 + 244/315*x^7 + 554/567*x^9 ...
		

Crossrefs

Cf. A002436, A335258 (denominators).

Programs

  • Mathematica
    Numerator @ CoefficientList[Series[ArcTanh[Tan[x]], {x, 0, 34}], x][[2 ;; -1 ;; 2]] (* Amiram Eldar, May 30 2020 *)
  • PARI
    a(n)={numerator((-1)^(n-1)*(polcoef(atan(tanh(x + O(x^(2*n)))), 2*n-1)))} \\ Andrew Howroyd, May 29 2020

Formula

a(n)/A335258(n) = A002436(n-1)/(2*n-1)!. - Andrew Howroyd, May 29 2020

Extensions

Terms a(9) and beyond from Andrew Howroyd, May 29 2020

A371688 Triangle read by rows: T(n, k) = (2*n + 1)! * [y^(2*k)] [x^(2*n+1)] arctan(sec(x*y)*sinh(x)).

Original entry on oeis.org

1, -1, 3, 5, -50, 25, -61, 1281, -2135, 427, 1385, -49860, 174510, -116340, 12465, -50521, 2778655, -16671930, 23340702, -8335965, 555731, 2702765, -210815670, 1932476975, -4637944740, 3478458555, -772990790, 35135945
Offset: 0

Views

Author

Peter Luschny, Apr 03 2024

Keywords

Comments

Expansion of the exponential generating function arctan(sec(x*y)*sinh(x)), nonzero terms only.

Examples

			Triangle starts:
  [0]      1;
  [1]     -1,       3;
  [2]      5,     -50,        25;
  [3]    -61,    1281,     -2135,      427;
  [4]   1385,  -49860,    174510,  -116340,    12465;
  [5] -50521, 2778655, -16671930, 23340702, -8335965, 555731;
		

Crossrefs

Cf. A000364 (column 0), A009843 (main diagonal), A012816 (row sums), A002436 (alternating row sums).

Programs

  • Maple
    egf := arctan(sec(x*y)*sinh(x)):
    serx := simplify(series(egf, x, 26)): coeffx := n -> n!*coeff(serx, x, n):
    seq(lprint(seq(coeff(coeffx(2*n + 1), y, 2*k), k = 0..n)), n = 0..7);
  • Mathematica
    T[n_,k_]:=(-1)^k*Binomial[2*n+1,2*k]*EulerE[2*n];Flatten[Table[T[n,k],{n,0,6},{k,0,n}]] (* Detlef Meya, Apr 07 2024 *)

Formula

T(n, k) = (-1)^k*binomial(2*n + 1, 2*k)*Euler(2*n). - Detlef Meya, Apr 07 2024

A256679 A signed triangle of V. I. Arnold for the Springer numbers (A001586).

Original entry on oeis.org

1, 1, 0, -2, -3, -3, -8, -6, -3, 0, 40, 48, 54, 57, 57, 256, 216, 168, 114, 57, 0, -1952, -2208, -2424, -2592, -2706, -2763, -2763, -17408, -15456, -13248, -10824, -8232, -5526, -2763, 0, 177280, 194688, 210144, 223392, 234216, 242448, 247974, 250737, 250737
Offset: 0

Views

Author

Vladimir Kruchinin, Apr 07 2015

Keywords

Comments

This triangle is denoted R(b) on page 6 of the Arnold reference.
Unsigned version of triangle is triangle of A202818.
First column (m=0) is A000828. - Robert Israel, Apr 08 2015

Examples

			Triangle begins:
    1;
    1,   0;
   -2,  -3,  -3;
   -8,  -6,  -3,   0;
   40,  48,  54,  57, 57;
  256, 216, 168, 114, 57, 0;
		

Crossrefs

Programs

  • Maple
    T:= (n,m) -> add(add(4^i*euler(2*i)*binomial(2*k,2*i)*binomial(n-m,2*k-m),i=0..k),k=floor(m/2)..floor(n/2)):
    seq(seq(T(n,m),m=0..n),n=0..10); # Robert Israel, Apr 08 2015
    # Second program, about 100 times faster than the first for the first 100 rows.
    Triangle := proc(len) local s, A, n, k;
    A := Array(0..len-1,[1]); lprint(A[0]);
    for n from 1 to len-1 do
       if n mod 2 = 1 then s := 0 else
       s := 2^(3*n+1)*(Zeta(0,-n,1/8)-Zeta(0,-n,5/8)) fi;
       A[n] := s;
       for k from n-1 by -1 to 0 do
           s := s + A[k]; A[k] := s od;
       lprint(seq(A[k], k=0..n));
    od end:
    Triangle(100); # Peter Luschny, Apr 08 2015
  • Mathematica
    T[n_, m_] := Sum[4^i EulerE[2i] Binomial[2k, 2i] Binomial[n-m, 2k-m], {k, Floor[m/2], n/2}, {i, 0, k}];
    Table[T[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
  • Maxima
    T(n,m):=(sum((sum(4^i*euler(2*i)*binomial(2*k,2*i),i,0,k))*binomial(n-m,2*k-m),k,floor(m/2),n/2));
    
  • Sage
    def triangle(len):
        L = [1]; print(L)
        for n in range(1,len):
            if is_even(n):
                s = 2^(3*n+1)*(hurwitz_zeta(-n,1/8)-hurwitz_zeta(-n,5/8))
            else: s = 0
            L.append(s)
            for k in range(n-1,-1,-1):
                s = s + L[k]; L[k] = s
            print(L)
    triangle(7) # Peter Luschny, Apr 08 2015

Formula

E.g.f.: cosh(x+y)/cosh(2*(x+y))*exp(x).
T(n,m) = Sum_{k=floor(m/2)..floor(n/2)} Sum_{i=0..k} 4^i*E(2*i)*C(2*k,2*i)*C(n-m,2*k-m), where E(n) are the Euler secant numbers A122045.

A371687 Triangle read by rows: T(n, k) = (-1)^(n-k) * (2*n + 1)! * [y^(2*k)] [x^(2*n+1)] arctan(sec(x*y)*tanh(x)).

Original entry on oeis.org

1, 4, 3, 80, 80, 25, 3904, 5376, 2660, 427, 354560, 626688, 433440, 131712, 12465, 51733504, 111738880, 99242880, 43804992, 9021540, 555731, 11070525440, 28258074624, 30647302400, 17666508288, 5509286640, 816337808, 35135945
Offset: 0

Views

Author

Peter Luschny, Apr 03 2024

Keywords

Comments

Expansion of the exponential generating function arctan(sec(x*y)*tanh(x)), nonzero terms only.

Examples

			Triangle starts:
  [0]        1;
  [1]        4,         3;
  [2]       80,        80,       25;
  [3]     3904,      5376,     2660,      427;
  [4]   354560,    626688,   433440,   131712,   12465;
  [5] 51733504, 111738880, 99242880, 43804992, 9021540, 555731;
		

Crossrefs

Cf. A002436 (column 0), A009843 (main diagonal), A012798 (row sums), A012835 (alternating row sums).
Cf. A371688.

Programs

  • Maple
    egf := arctan(sec(x*y)*tanh(x)):
    serx := simplify(series(egf, x, 26)): coeffx := n -> n!*coeff(serx, x, n):
    seq(print(seq((-1)^(n-k)*coeff(coeffx(2*n+1), y, 2*k), k = 0..n)), n = 0..6);
Previous Showing 11-18 of 18 results.