A000819
E.g.f.: cos(x)^2 / cos(2x) = Sum_{n >= 0} a(n) * x^(2n) / (2n)!.
Original entry on oeis.org
1, 2, 40, 1952, 177280, 25866752, 5535262720, 1633165156352, 635421069967360, 315212388819402752, 194181169538675507200, 145435130631317935357952, 130145345400688287667978240, 137139396592145493713802493952
Offset: 0
G.f. = 1 + 2*x + 40*x^2 + 1952*x^3 + 177280*x^4 + 25866752*x^5 + ... - _Michael Somos_, Apr 04 2017
-
With[{nn=30},Take[CoefficientList[Series[Cos[x]^2/Cos[2x],{x,0,nn}],x] Range[ 0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Jul 06 2014 *)
a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, m! SeriesCoefficient[ 1 / (1 - Tan[x]^2), {x, 0, m}]]]; (* Michael Somos, Apr 04 2017 *)
-
{a(n) = my(m); if( n<0, 0, m = 2*n; m! * polcoeff( 1 / (1 - tan(x + x * O(x^m))^2), m))}; /* Michael Somos, Apr 04 2017 */
A117437
Expansion of e.g.f.: exp(x)*sec(2*x).
Original entry on oeis.org
1, 1, 5, 13, 105, 441, 5165, 30213, 469585, 3529201, 68525525, 629401213, 14664091065, 159175688361, 4326609913085, 54189700721013, 1683369010256545, 23894940183997921, 835066388382183845, 13248060325188261613
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(x)*Sec(2*x) ))); // G. C. Greubel, May 31 2021
-
With[{nn=30},CoefficientList[Series[Exp[x]Sec[2x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Dec 13 2011 *)
-
my(x='x+O('x^30)); Vec(serlaplace(exp(x)/cos(2*x))) \\ Michel Marcus, Jun 01 2021
-
[factorial(n)*( exp(x)*sec(2*x) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, May 31 2021
A291260
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - 2^k*x/(1 - 4^k*x/(1 - 6^k*x/(1 - 8^k*x/(1 - 10^k*x/(1 - ...)))))).
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 4, 12, 5, 1, 8, 80, 120, 14, 1, 16, 576, 3904, 1680, 42, 1, 32, 4352, 152064, 354560, 30240, 132, 1, 64, 33792, 6492160, 99422208, 51733504, 665280, 429, 1, 128, 266240, 290488320, 31832735744, 130292416512, 11070525440, 17297280, 1430
Offset: 0
Square array begins:
: 1, 1, 1, 1, 1, ...
: 1, 2, 4, 8, 16, ...
: 2, 12, 80, 576, 4352, ...
: 5, 120, 3904, 152064, 6492160, ...
: 14, 1680, 354560, 99422208, 31832735744, ...
: 42, 30240, 51733504, 130292416512, 390365719822336, ...
-
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-(2 i)^k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 8}, {n, 0, j}] // Flatten
A138076
Triangle read by rows: T(n, k) = (-1)^(n+k) * A060187(n+1, k+1).
Original entry on oeis.org
1, -1, 1, 1, -6, 1, -1, 23, -23, 1, 1, -76, 230, -76, 1, -1, 237, -1682, 1682, -237, 1, 1, -722, 10543, -23548, 10543, -722, 1, -1, 2179, -60657, 259723, -259723, 60657, -2179, 1, 1, -6552, 331612, -2485288, 4675014, -2485288, 331612, -6552, 1, -1, 19673, -1756340, 21707972, -69413294, 69413294, -21707972, 1756340, -19673, 1
Offset: 0
Triangle begins as:
1;
-1, 1;
1, -6, 1;
-1, 23, -23, 1;
1, -76, 230, -76, 1;
-1, 237, -1682, 1682, -237, 1;
1, -722, 10543, -23548, 10543, -722, 1;
-1, 2179, -60657, 259723, -259723, 60657, -2179, 1;
1, -6552, 331612, -2485288, 4675014, -2485288, 331612, -6552, 1;
-
A060187:= func< n,k | (&+[(-1)^(k-j)*Binomial(n, k-j)*(2*j-1)^(n-1): j in [1..k]]) >;
A138076:= func< n,k | (-1)^(n+k)*A060187(n+1,k+1) >;
[A138076(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 21 2024
-
p[t_] = Exp[t]*x/(Exp[2*t] + x);
Table[CoefficientList[(n!*(1+x)^(n+1)/x)*SeriesCoefficient[Series[p[ t], {t,0,30}], n], x], {n,0,12}]//Flatten
-
@CachedFunction
def t(n,k): # t = A060187
if k==1 or k==n: return 1
return (2*(n-k)+1)*t(n-1, k-1) + (2*k-1)*t(n-1, k)
def A138076(n,k): return (-1)^(n+k)*t(n+1,k+1)
flatten([[A138076(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 21 2024
A335257
Numerators of expansion of arctanh(tan(x)) (odd powers only).
Original entry on oeis.org
1, 2, 2, 244, 554, 202084, 166324, 1594887848, 456270874, 9619518701764, 59259390118004, 554790995145103208, 954740563911205348, 32696580074344991138888, 3636325637469705598456, 7064702291984369672858925136, 4176926860695042104392112698
Offset: 1
arctan(tanh(x)) = x - 2/3*x^3 + 2/3*x^5 - 244/315*x^7 + 554/567*x^9 ...
arctanh(tan(x)) = x + 2/3*x^3 + 2/3*x^5 + 244/315*x^7 + 554/567*x^9 ...
- Johann Heinrich Lambert, Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques, Histoire de l'Académie Royale des Sciences et Belles-Lettres, 1761, volume XVII, Berlin, 1768, pp. 265-322. See also.
- Denis Roegel, Lambert's proof of the irrationality of Pi: Context and translation, hal-02984214 [math.HO], 2020.
-
Numerator @ CoefficientList[Series[ArcTanh[Tan[x]], {x, 0, 34}], x][[2 ;; -1 ;; 2]] (* Amiram Eldar, May 30 2020 *)
-
a(n)={numerator((-1)^(n-1)*(polcoef(atan(tanh(x + O(x^(2*n)))), 2*n-1)))} \\ Andrew Howroyd, May 29 2020
A371688
Triangle read by rows: T(n, k) = (2*n + 1)! * [y^(2*k)] [x^(2*n+1)] arctan(sec(x*y)*sinh(x)).
Original entry on oeis.org
1, -1, 3, 5, -50, 25, -61, 1281, -2135, 427, 1385, -49860, 174510, -116340, 12465, -50521, 2778655, -16671930, 23340702, -8335965, 555731, 2702765, -210815670, 1932476975, -4637944740, 3478458555, -772990790, 35135945
Offset: 0
Triangle starts:
[0] 1;
[1] -1, 3;
[2] 5, -50, 25;
[3] -61, 1281, -2135, 427;
[4] 1385, -49860, 174510, -116340, 12465;
[5] -50521, 2778655, -16671930, 23340702, -8335965, 555731;
-
egf := arctan(sec(x*y)*sinh(x)):
serx := simplify(series(egf, x, 26)): coeffx := n -> n!*coeff(serx, x, n):
seq(lprint(seq(coeff(coeffx(2*n + 1), y, 2*k), k = 0..n)), n = 0..7);
-
T[n_,k_]:=(-1)^k*Binomial[2*n+1,2*k]*EulerE[2*n];Flatten[Table[T[n,k],{n,0,6},{k,0,n}]] (* Detlef Meya, Apr 07 2024 *)
A256679
A signed triangle of V. I. Arnold for the Springer numbers (A001586).
Original entry on oeis.org
1, 1, 0, -2, -3, -3, -8, -6, -3, 0, 40, 48, 54, 57, 57, 256, 216, 168, 114, 57, 0, -1952, -2208, -2424, -2592, -2706, -2763, -2763, -17408, -15456, -13248, -10824, -8232, -5526, -2763, 0, 177280, 194688, 210144, 223392, 234216, 242448, 247974, 250737, 250737
Offset: 0
Triangle begins:
1;
1, 0;
-2, -3, -3;
-8, -6, -3, 0;
40, 48, 54, 57, 57;
256, 216, 168, 114, 57, 0;
-
T:= (n,m) -> add(add(4^i*euler(2*i)*binomial(2*k,2*i)*binomial(n-m,2*k-m),i=0..k),k=floor(m/2)..floor(n/2)):
seq(seq(T(n,m),m=0..n),n=0..10); # Robert Israel, Apr 08 2015
# Second program, about 100 times faster than the first for the first 100 rows.
Triangle := proc(len) local s, A, n, k;
A := Array(0..len-1,[1]); lprint(A[0]);
for n from 1 to len-1 do
if n mod 2 = 1 then s := 0 else
s := 2^(3*n+1)*(Zeta(0,-n,1/8)-Zeta(0,-n,5/8)) fi;
A[n] := s;
for k from n-1 by -1 to 0 do
s := s + A[k]; A[k] := s od;
lprint(seq(A[k], k=0..n));
od end:
Triangle(100); # Peter Luschny, Apr 08 2015
-
T[n_, m_] := Sum[4^i EulerE[2i] Binomial[2k, 2i] Binomial[n-m, 2k-m], {k, Floor[m/2], n/2}, {i, 0, k}];
Table[T[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
-
T(n,m):=(sum((sum(4^i*euler(2*i)*binomial(2*k,2*i),i,0,k))*binomial(n-m,2*k-m),k,floor(m/2),n/2));
-
def triangle(len):
L = [1]; print(L)
for n in range(1,len):
if is_even(n):
s = 2^(3*n+1)*(hurwitz_zeta(-n,1/8)-hurwitz_zeta(-n,5/8))
else: s = 0
L.append(s)
for k in range(n-1,-1,-1):
s = s + L[k]; L[k] = s
print(L)
triangle(7) # Peter Luschny, Apr 08 2015
A371687
Triangle read by rows: T(n, k) = (-1)^(n-k) * (2*n + 1)! * [y^(2*k)] [x^(2*n+1)] arctan(sec(x*y)*tanh(x)).
Original entry on oeis.org
1, 4, 3, 80, 80, 25, 3904, 5376, 2660, 427, 354560, 626688, 433440, 131712, 12465, 51733504, 111738880, 99242880, 43804992, 9021540, 555731, 11070525440, 28258074624, 30647302400, 17666508288, 5509286640, 816337808, 35135945
Offset: 0
Triangle starts:
[0] 1;
[1] 4, 3;
[2] 80, 80, 25;
[3] 3904, 5376, 2660, 427;
[4] 354560, 626688, 433440, 131712, 12465;
[5] 51733504, 111738880, 99242880, 43804992, 9021540, 555731;
-
egf := arctan(sec(x*y)*tanh(x)):
serx := simplify(series(egf, x, 26)): coeffx := n -> n!*coeff(serx, x, n):
seq(print(seq((-1)^(n-k)*coeff(coeffx(2*n+1), y, 2*k), k = 0..n)), n = 0..6);
Comments