cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 160 results. Next

A068185 Number of ways writing n^n as a product of decimal digits of some other number which has no digits equal to 1.

Original entry on oeis.org

0, 2, 3, 81, 1, 102136, 1, 1389537, 4181, 4972825, 0, 12718670252691776, 0, 4506838380, 11472991008, 53560898629395777, 0, 514875062240230100091396, 0, 164997736300578242823300, 241098942106440, 0, 0, 3203410440031870942324022423896806853153460, 1, 0, 61305790721611591
Offset: 1

Views

Author

Labos Elemer, Feb 19 2002

Keywords

Comments

a(n)= 0 when n has prime-factor larger than 7 [so A067734(n)=0] or when n is in A068191, i.e. not in A002473.

Examples

			n=1 has no solution; a(2)=A000073(6)=2 with {4,22} solutions; a(3)=A067734(27)=3=Fibonacci[4]; n=5 and n=7, n^n has single prime factor of which any true multiple have 2 digits so 55555 and 7777777 are the only solutions, so a(5)=a(7)=1; a(4)=A067734(256)=81=A000073(10); a(8)=A067734(2^24)=A000073(26)=1389537; n=9 a(9)=A067734(3^27)=4181.
		

Crossrefs

Formula

a(n) = A067734(n^n) = A067734(A000312(n))

Extensions

Edited By Henry Bottomley, Feb 26 2002.
Edited and extended by Max Alekseyev, Sep 19 2009
a(9) corrected by Sean A. Irvine, Feb 01 2024

A068186 a(n) is the largest number whose product of decimal digits equals n^n.

Original entry on oeis.org

22, 333, 22222222, 55555, 333333222222, 7777777, 222222222222222222222222, 333333333333333333, 55555555552222222222, 0, 333333333333222222222222222222222222, 0, 7777777777777722222222222222
Offset: 2

Views

Author

Labos Elemer, Feb 19 2002

Keywords

Comments

No digit=1 is permitted to avoid infinite number of solutions; a(n)=0 if A067734(n^n)=0.

Examples

			n=10, 10^10=10000000000, a(5)=55555555552222222222.
		

Crossrefs

Programs

  • Python
    from sympy import factorint
    def A068186(n):
        if n == 1:
            return 1
        pf = factorint(n)
        ps = sorted(pf.keys(),reverse=True)
        if ps[0] > 7:
            return 0
        s = ''
        for p in ps:
            s += str(p)*(n*pf[p])
        return int(s) # Chai Wah Wu, Aug 12 2017

Formula

a(n) is obtained as prime factors of n^n concatenated in order of magnitude and with repetitions; a(n)=0 if n has p > 7 prime factors.

Extensions

a(12) corrected by Chai Wah Wu, Aug 12 2017

A068190 Largest number whose digit product equals n; a(n)=0 if no such number exists, e.g., when n has a prime factor larger than 7; no digit=1 is permitted to avoid an infinite number of solutions.

Original entry on oeis.org

0, 2, 3, 22, 5, 32, 7, 222, 33, 52, 0, 322, 0, 72, 53, 2222, 0, 332, 0, 522, 73, 0, 0, 3222, 55, 0, 333, 722, 0, 532, 0, 22222, 0, 0, 75, 3322, 0, 0, 0, 5222, 0, 732, 0, 0, 533, 0, 0, 32222, 77, 552, 0, 0, 0, 3332, 0, 7222, 0, 0, 0, 5322, 0, 0, 733, 222222, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Labos Elemer, Feb 19 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Array[If[#[[-1, 1]] > 7, 0, FromDigits@ Reverse@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, #]] &@ FactorInteger@ # &, 69] /. 1 -> 0 (* Michael De Vlieger, Dec 08 2018 *)
  • PARI
    a(n) = {my(res = []); for(i=2, 9, v = valuation(n, i); if(v > 0, res = concat(vector(v, j, i), res); n/=i^v)); if(n==1,fromdigits(res), 0)} \\ David A. Corneth, Jul 31 2017

Formula

If a solution exists, a(n) is the concatenation of prime factors with repetitions and in order of magnitude, otherwise a(n)=0.

Extensions

a(36) corrected by David A. Corneth, Jul 31 2017

A069077 Triangular numbers such that the product of digits is also a (positive) triangular number.

Original entry on oeis.org

1, 3, 6, 66, 153, 231, 351, 465, 741, 1326, 2556, 5671, 6786, 14535, 21115, 24531, 25651, 33411, 43956, 57291, 58311, 71253, 92665, 95266, 123753, 153181, 167331, 278631, 325221, 341551, 351541, 372816, 459361, 491536, 516636, 521731, 567645, 572985, 613278
Offset: 1

Views

Author

Amarnath Murthy, Apr 05 2002

Keywords

Crossrefs

Programs

  • Magma
    [m:m in [1..600000]|not 0 in Intseq(m) and IsSquare(8*m+1) and IsSquare(8*(&*Intseq(m))+1)]; // Marius A. Burtea, Aug 12 2019
  • Mathematica
    aQ[n_] := (p = Times @@ IntegerDigits[n]) > 0 && IntegerQ @ Sqrt[8p + 1]; t[n_] := n(n+1)/2; Select[t[Range[10^3]], aQ] (* Amiram Eldar, Aug 12 2019 *)
    Select[Accumulate[Range[1500]],FreeQ[IntegerDigits[#],0]&&OddQ[Sqrt[8 Times@@IntegerDigits[ #]+1]]&] (* Harvey P. Dale, May 01 2023 *)

Extensions

More terms from Jason Earls and Lior Manor, May 15 2002

A080195 11-smooth numbers which are not 7-smooth.

Original entry on oeis.org

11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 154, 165, 176, 198, 220, 231, 242, 264, 275, 297, 308, 330, 352, 363, 385, 396, 440, 462, 484, 495, 528, 539, 550, 594, 605, 616, 660, 693, 704, 726, 770, 792, 825, 847, 880, 891, 924, 968, 990, 1056, 1078, 1089
Offset: 1

Views

Author

Klaus Brockhaus, Feb 10 2003

Keywords

Comments

Numbers of the form 2^r*3^s*5^t*7^u*11^v with r, s, t, u >= 0, v > 0.

Examples

			33 = 3*11 is a term but 35 = 5*7 is not.
		

Crossrefs

Programs

  • Maple
    N:= 10^6; # to get all terms <= N
    A:= NULL;
    for v from 1 to floor(log[11](N)) do
       V:= 11^v;
       for u from 0 to floor(log[7](N/V)) do
          U:= 7^u*V;
          for t from 0 to floor(log[5](N/U)) do
            T:= 5^t*U;
            for s from 0 to floor(log[3](N/T)) do
              S:= 3^s*T;
              for r from 0 to floor(log[2](N/S)) do
                 A:= A, 2^r*S
              od
             od
           od
        od
    od:
    {A}; # Robert Israel, May 28 2014
  • Mathematica
    Select[Range[1000], FactorInteger[#][[-1, 1]] == 11 &] (* Amiram Eldar, Nov 10 2020 *)
  • PARI
    {m=1100; z=[]; for(r=0,floor(log(m)/log(2)),a=2^r; for(s=0,floor(log(m/a)/log(3)),b=a*3^s; for(t=0, floor(log(m/b)/log(5)),c=b*5^t; for(u=0,floor(log(m/c)/log(7)),d=c*7^u; for(v=1,floor(log(m/d)/log(11)), z=concat(z,d*11^v)))))); z=vecsort(z); for(i=1,length(z),print1(z[i],","))}
    
  • Python
    from sympy import integer_log, prevprime
    def A080195(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        def f(x): return n+x-g(x,11)
        return 11*bisection(f,n,n) # Chai Wah Wu, Oct 22 2024

Formula

a(n) = 11 * A051038(n). - David A. Corneth, May 27 2017
Sum_{n>=1} 1/a(n) = 7/16. - Amiram Eldar, Nov 10 2020

A080786 Triangle T(n,k) = number of k-smooth numbers <= n, read by rows.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 3, 4, 4, 1, 3, 4, 4, 5, 1, 3, 5, 5, 6, 6, 1, 3, 5, 5, 6, 6, 7, 1, 4, 6, 6, 7, 7, 8, 8, 1, 4, 7, 7, 8, 8, 9, 9, 9, 1, 4, 7, 7, 9, 9, 10, 10, 10, 10, 1, 4, 7, 7, 9, 9, 10, 10, 10, 10, 11, 1, 4, 8, 8, 10, 10, 11, 11, 11, 11, 12, 12, 1, 4, 8, 8, 10, 10, 11, 11, 11, 11, 12, 12, 13, 1, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 12 2003

Keywords

Comments

T(n,n-1) = A014684(n) for n>1;
T(n,2) = A029837(n) for n>1; T(n,3) = A071521(n) for n>2; T(n,5) = A071520(n) for n>4.
A036234(n) = number of distinct terms in n-th row. - Reinhard Zumkeller, Sep 17 2013

Examples

			Triangle begins:
.................. 1
................ 1...2
.............. 1...2...3
............ 1...3...4...4
.......... 1...3...4...4...5
........ 1...3...5...5...6...6
...... 1...3...5...5...6...6...7
.... 1...4...6...6...7...7...8...8
.. 1...4...7...7...8...8...9...9...9.
		

Crossrefs

Programs

  • Haskell
    a080786 n k = a080786_tabl !! (n-1) !! (k-1)
    a080786_row n = a080786_tabl !! (n-1)
    a080786_tabl = map reverse $ iterate f [1] where
       f xs@(x:_) = (x + 1) :
                    (zipWith (+) xs (map (fromEnum . (lpf <=)) [x, x-1 ..]))
            where lpf = fromInteger $ a006530 $ fromIntegral (x + 1)
    -- Reinhard Zumkeller, Sep 17 2013
    
  • Maple
    A080786 := proc(x,y)
        local a,n ;
        a := 0 ;
        for n from 1 to x do
            if A006530(n) <= y then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Aug 31 2013
  • Mathematica
    P[n_] := FactorInteger[n][[-1, 1]]; P[1]=1; T[n_, k_] := (For[j=0; m=1, m <= n, m++, If[P[m] <= k, j++]]; j); Table[T[n, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 22 2015 *)
  • Python
    from itertools import count, islice
    from sympy import prevprime, integer_log
    def A080786_T(n,k):
        if k==1: return 1
        def g(x,m): return x.bit_length() if m==2 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        return g(n,prevprime(k+1))
    def A080786_gen(): # generator of terms
        return (A080786_T(n,k) for n in count(1) for k in range(1,n+1))
    A080786_list = list(islice(A080786_gen(),100)) # Chai Wah Wu, Oct 22 2024

A084891 Multiples of 2, 3, 5, or 7, but not 7-smooth.

Original entry on oeis.org

22, 26, 33, 34, 38, 39, 44, 46, 51, 52, 55, 57, 58, 62, 65, 66, 68, 69, 74, 76, 77, 78, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 99, 102, 104, 106, 110, 111, 114, 115, 116, 117, 118, 119, 122, 123, 124, 129, 130, 132, 133, 134, 136, 138, 141, 142, 145, 146
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 13 2003

Keywords

Comments

Intersection of A068191 with (A005843, A008585, A008587 and A008589); union of (A005843, A008585, A008587 and A008589) without A002473.
A020639(a(n)) <= 7, A006530(a(n)) > 7.

Crossrefs

Programs

  • Mathematica
    okQ[n_] := AnyTrue[{2, 3, 5, 7}, Divisible[n, #]&] && FactorInteger[n][[-1, 1]] > 7;
    Select[Range[1000], okQ] (* Jean-François Alcover, Oct 15 2021 *)
  • PARI
    mult2357(m,n) = \\ mult 2,3,5,7 not 7 smooth
    {
    local(x,a,j,f,ln);
    for(x=m,n,
    f=0;
    if(gcd(x,210)>1,
    a = ifactor(x);
    for(j=1,length(a),
    if(a[j]>7,f=1;break);
    );
    if(f,print1(x","));
    );
    );
    }
    ifactor(n) = \\ The vector of the prime factors of n with multiplicity.
    {
    local(f,j,k,flist);
    flist=[];
    f=Vec(factor(n));
    for(j=1,length(f[1]),
    for(k = 1,f[2][j],flist = concat(flist,f[1][j])
    );
    );
    return(flist)
    }
    \\ Cino Hilliard, Jul 03 2009
    
  • Python
    from sympy import primefactors
    def ok(n):
        pf = set(primefactors(n))
        return pf & {2, 3, 5, 7} and pf - {2, 3, 5, 7}
    print(list(filter(ok, range(147)))) # Michael S. Branicky, Oct 15 2021

A086247 Differences of successive 7-smooth numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 3, 1, 2, 1, 2, 2, 3, 1, 4, 2, 3, 3, 1, 1, 4, 2, 4, 3, 1, 6, 2, 3, 5, 1, 3, 6, 6, 2, 2, 5, 3, 4, 8, 5, 1, 2, 7, 5, 4, 3, 3, 10, 2, 6, 7, 5, 9, 3, 4, 4, 10, 6, 8, 1, 15, 3, 2, 5, 2, 4, 14, 10, 8, 6, 6, 15, 5, 4, 12, 7, 7, 10, 15, 3, 6, 8, 8, 5, 15, 12
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 13 2003

Keywords

Comments

A002473(n) is a term of A085153 iff a(n)=1.

Examples

			a(23) = 3 as A002473(23 + 1) - A002473(23) = 35 - 32 = 3. - _David A. Corneth_, Mar 31 2021
		

Crossrefs

Programs

  • Mathematica
    smooth7Q[n_] := n == Times@@({2, 3, 5, 7}^IntegerExponent[n, {2, 3, 5, 7}]);
    Select[Range[1000], smooth7Q] // Differences (* Jean-François Alcover, Oct 17 2021 *)

Formula

a(n) = A002473(n+1) - A002473(n).

A086291 Maximal exponent in prime factorization of 7-smooth numbers.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 2, 1, 1, 4, 2, 2, 1, 3, 2, 3, 2, 1, 5, 1, 2, 3, 1, 2, 4, 2, 2, 3, 3, 2, 2, 6, 1, 3, 2, 4, 4, 2, 2, 5, 2, 2, 1, 3, 4, 3, 3, 2, 7, 3, 2, 4, 2, 2, 5, 4, 3, 2, 2, 3, 6, 2, 3, 1, 3, 5, 2, 4, 5, 2, 3, 2, 8, 3, 3, 5, 2, 2, 2, 6, 4, 4, 3, 2, 3, 3, 3, 7, 3, 4, 4, 2, 4, 2, 6, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 15 2003

Keywords

Crossrefs

Programs

  • Mathematica
    maxExp[1] = 0; maxExp[n_] := Max @@ Last /@ FactorInteger[n]; maxExp/@Select[Range[500], Max[Transpose[FactorInteger[#]][[1]]] <= 7 &] (* Amiram Eldar, Jan 06 2020 *)

Formula

a(n) = A051903(A002473(n)).
A086290(n) <= a(n) <= A086289(n).

A161466 Divisors of 10!.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 35, 36, 40, 42, 45, 48, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80, 81, 84, 90, 96, 100, 105, 108, 112, 120, 126, 128, 135, 140, 144, 150, 160, 162, 168, 175, 180, 189, 192, 200, 210, 216, 224
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 10 2009

Keywords

Comments

Finite subsequence of A002473, the 7-smooth numbers;
10! = A000142(10) = 3628800;
tau(3628800) = A000005(3628800) = 270;
last term: a(270) = 3628800.
A027423(10) = 270; a(n) = A027750(A000142(10),n), n = 1..270. - Reinhard Zumkeller, Aug 27 2013

Programs

Previous Showing 81-90 of 160 results. Next