cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A321119 a(n) = ((1 - sqrt(3))^n + (1 + sqrt(3))^n)/2^floor((n - 1)/2); n-th row common denominator of A321118.

Original entry on oeis.org

4, 2, 8, 10, 28, 38, 104, 142, 388, 530, 1448, 1978, 5404, 7382, 20168, 27550, 75268, 102818, 280904, 383722, 1048348, 1432070, 3912488, 5344558, 14601604, 19946162, 54493928, 74440090, 203374108, 277814198, 759002504, 1036816702, 2832635908, 3869452610
Offset: 0

Views

Author

Keywords

Examples

			a(0) = ((1 - sqrt(3))^0 + (1 + sqrt(3))^0)/2^floor((0 - 1)/2) = 2*(1 + 1) = 4.
		

References

  • Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.2.

Crossrefs

Cf. A002176 (common denominators of Cotesian numbers).

Programs

  • Mathematica
    LinearRecurrence[{0, 4, 0, -1}, {4, 2, 8, 10}, 50]
  • Maxima
    a(n) := ((1 - sqrt(3))^n + (1 + sqrt(3))^n)/2^floor((n - 1)/2)$
    makelist(ratsimp(a(n)), n, 0, 50);

Formula

a(n) = (((sqrt(2) - sqrt(6))/2)^n + ((sqrt(6) + sqrt(2))/2)^n)*((2 - sqrt(2))*(-1)^n + 2 + sqrt(2))/2.
a(-n) = (-1)^n*a(n).
a(n) = 2*A000034(n+1)*A002531(n).
a(2*n) = 2*A001834(n).
a(2*n+1) = 2*A003500(n).
a(n) = 4*a(n-2) - a(n-4) with a(0) = 4, a(1) = 2, a(2) = 8, a(3) = 10.
a(2*n+3) = a(2*n+1) + a(2*n+2).
a(2*n+2) = a(2*n) + 2*a(2*n+1).
G.f.: 2*(1 - x)*(2 + 3*x - x^2)/(1 - 4*x^2 + x^4).
E.g.f.: (1 + exp(-sqrt(6)*x))*((2 - sqrt(2))*exp(sqrt(2 - sqrt(3))*x) + (2 + sqrt(2))*exp(sqrt(2 + sqrt(3))*x))/2.
Lim_{n->infinity} a(2*n+1)/a(2*n) = (1 + sqrt(3))/2.

A131039 Expansion of (1-x)*(2*x^2-4*x+1)/(1-2*x+5*x^2-4*x^3+x^4).

Original entry on oeis.org

1, -3, -5, 7, 26, 0, -97, -97, 265, 627, -362, -2702, -1351, 8733, 13775, -18817, -70226, 0, 262087, 262087, -716035, -1694157, 978122, 7300802, 3650401, -23596563, -37220045, 50843527, 189750626, 0, -708158977, -708158977, 1934726305, 4577611587, -2642885282, -19726764302, -9863382151
Offset: 0

Views

Author

Creighton Dement, Jun 11 2007

Keywords

Comments

Unsigned bisection gives match to A002316 (Related to Bernoulli numbers). Note that all numbers in A002316 appear to be in A002531 (Numerators of continued fraction convergents to sqrt(3)) as well. a(12*n+5) = (0,0,0,0,...)
Floretion Algebra Multiplication Program, FAMP Code: 2tesseq['i + .5i' + .5j' + .5k' + .5e]

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(0)=1, a(1)=-3, a(2)=-5, a(3)=7, a(n)=2*a(n-1)-5*a(n-2)+4*a(n-3)-a(n-4)},a(n),remember):
    map(f, [$0..100]); # Robert Israel, Dec 25 2016
  • Mathematica
    CoefficientList[Series[(1-x)(2x^2-4x+1)/(1-2x+5x^2-4x^3+x^4),{x, 0, 50}], x] (* or *) LinearRecurrence[{2,-5,4,-1},{1,-3,-5,7},50] (* Harvey P. Dale, Aug 31 2011 *)

Formula

a(0)=1, a(1)=-3, a(2)=-5, a(3)=7, a(n)=2*a(n-1)-5*a(n-2)+4*a(n-3)-a(n-4) [Harvey P. Dale, Aug 31 2011]

A131040 a(n) = (1/2+1/2*i*sqrt(11))^n + (1/2-1/2*i*sqrt(11))^n, where i=sqrt(-1).

Original entry on oeis.org

1, -5, -8, 7, 31, 10, -83, -113, 136, 475, 67, -1358, -1559, 2515, 7192, -353, -21929, -20870, 44917, 107527, -27224, -349805, -268133, 781282, 1585681, -758165, -5515208, -3240713, 13304911, 23027050, -16887683, -85968833, -35305784
Offset: 0

Views

Author

Creighton Dement, Jun 11 2007

Keywords

Comments

Generating floretion is 1.5i' + .5j' + .5k' + .5e whereas in A131039 it is 'i + .5i' + .5j' + .5k' + .5e
Essentially the Lucas sequence V(1,3). - Peter Bala, Jun 23 2015

Crossrefs

Programs

  • Maple
    Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[ 1.5i' + .5j' + .5k' + .5e]
  • Sage
    [lucas_number2(n,1,3) for n in range(1, 34)] # Zerinvary Lajos, May 14 2009

Formula

a(n) = a(n-1) - 3*a(n-2); G.f. (1 - 6*x)/(1 - x + 3*x^2).
a(n) = [x^n] ( (1 + x + sqrt(1 + 2*x - 11*x^2))/2 )^n. - Peter Bala, Jun 23 2015

A131041 a(n) = 2*a(n-1) - a(n-2) - a(n-4).

Original entry on oeis.org

1, 1, 1, -1, -4, -8, -13, -17, -17, -9, 12, 50, 105, 169, 221, 223, 120, -152, -645, -1361, -2197, -2881, -2920, -1598, 1921, 8321, 17641, 28559, 37556, 38232, 21267, -24257, -107337, -228649, -371228, -489550, -500535, -282871, 306021
Offset: 0

Views

Author

Creighton Dement, Jun 11 2007

Keywords

Comments

Generating floretion is .5i' + .5j' + .5k' + .5e + 'ii' (for A131039 it is 'i + .5i' + .5j' + .5k' + .5e and for A131040 it is 1.5i' + .5j' + .5k' + .5e)

Crossrefs

Programs

  • Maple
    Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[.5i' + .5j' + .5k' + .5e + 'ii']
  • Mathematica
    LinearRecurrence[{2,-1,0,-1},{1,1,1,-1},40] (* Harvey P. Dale, Oct 14 2012 *)

Formula

G.f. (1-x-2*x^3)/(1-2*x+x^2+x^4)

A199710 Expansion of (1+x-14*x^2+13*x^3)/(1-28*x^2+169*x^4).

Original entry on oeis.org

1, 1, 14, 41, 223, 979, 3878, 20483, 70897, 408073, 1329734, 7964417, 25250959, 154039339, 482301806, 2967115019, 9237038497, 57046572241, 177128072702, 1095861584537, 3398526529663, 21043253658307, 65224098543926, 404010494645843, 1251923775716881
Offset: 0

Views

Author

Bruno Berselli, Nov 10 2011

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,14,41]; [n le 4 select I[n] else 28*Self(n-2)-169*Self(n-4): n in [1..25]];
    
  • Mathematica
    LinearRecurrence[{0, 28, 0, -169}, {1, 1, 14, 41}, 25]
    CoefficientList[Series[(1+x-14x^2+13x^3)/(1-28x^2+169x^4),{x,0,30}],x] (* Harvey P. Dale, Nov 08 2017 *)
  • Maxima
    makelist(expand(((1+3*sqrt(3))^n+(1-3*sqrt(3))^n)/(2*2^floor(n/2))),n,0,24);
  • PARI
    Vec((1+x-14*x^2+13*x^3)/(1-28*x^2+169*x^4)+O(x^25))
    

Formula

G.f.: (1+x-14*x^2+13*x^3)/(1-28*x^2+169*x^4).
a(n) = ((1+3*sqrt(3))^n+(1-3*sqrt(3))^n)/(2*2^floor(n/2)).
a(n) = 28*a(n-2)-169*a(n-4).

A238799 a(0) = 1, a(n+1) = 2*a(n)^3 + 3*a(n).

Original entry on oeis.org

1, 5, 265, 37220045, 103124220135120334842385, 2193370648451279691104497113491599222165108730278225579497595691360405
Offset: 0

Views

Author

Arkadiusz Wesolowski, Mar 05 2014

Keywords

Comments

a(6) has 209 digits and is too large to include.
Except for the first term, this is a subsequence of A175180.
The squares larger than 1 are in A076445.
If we define u(0) = 1 , u(n+1) = (u(n)/3)*(u(n)^2+9) / (u(n)^2 + 1), then u(n) = a(n) / A378683(n) ; this is Halley's method to calculate sqrt(3). - Robert FERREOL, Dec 21 2024

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 1, a[n] == 2*a[n - 1]^3 + 3*a[n - 1]}, a[n], {n, 5}]
    NestList[2#^3+3#&,1,5] (* Harvey P. Dale, Mar 22 2023 *)
  • PARI
    a=1; print1(a, ", "); for(n=1, 5, b=2*a^3+3*a; print1(b, ", "); a=b);
    
  • PARI
    { A238799(n) = my(q=Mod(x,x^2-3)); lift( (1+q)*(2+q)^((3^n-1)/2) + (1-q)*(2-q)^((3^n-1)/2) )/2; } \\ Max Alekseyev, Sep 04 2018

Formula

a(n) = sqrt(2) * sinh( 3^n * arcsinh(1/sqrt(2)) ) = (1+sqrt(3))/2 * (2+sqrt(3))^((3^n-1)/2) + (1-sqrt(3))/2 * (2-sqrt(3))^((3^n-1)/2). - Max Alekseyev, Sep 04 2018
a(n) = ((1 + sqrt(3))^(3^n) + (1 - sqrt(3))^(3^n))/2^((3^n+1)/2) = A002531(3^n) = A080040(3^n)/2^((3^n+1)/2). - Robert FERREOL, Nov 19 2024

A083336 a(n) = 4*a(n-2) - a(n-4).

Original entry on oeis.org

3, 3, 9, 12, 33, 45, 123, 168, 459, 627, 1713, 2340, 6393, 8733, 23859, 32592, 89043, 121635, 332313, 453948, 1240209, 1694157, 4628523, 6322680, 17273883, 23596563, 64467009, 88063572, 240594153, 328657725, 897909603, 1226567328, 3351044259, 4577611587, 12506267433
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Apr 26 2003

Keywords

Comments

a(n)/A002531(n+1) converges to sqrt(3).

Programs

  • Mathematica
    CoefficientList[Series[(3+3x-3x^2)/(1-4x^2+x^4), {x, 0, 30}], x]
    Transpose[NestList[Flatten[{Rest[#],4#[[3]]-First[#]}]&, {3,3,9,12}, 50]][[1]]  (* Harvey P. Dale, Mar 26 2011 *)
    LinearRecurrence[{0, 4, 0, -1}, {3, 3, 9, 12}, 30] (* T. D. Noe, Mar 26 2011 *)

Formula

a(2*n) = A082841(n) = a(2*n-1) + 3*A002531(2*n).
a(2*n+1) = (a(2*n) + 3*A002531(2*n+1)) / 2.
G.f.: (3 + 3*x - 3*x^2) / (1 - 4*x^2 + x^4).

A096146 Prime numerators of the rational convergents to sqrt(3).

Original entry on oeis.org

2, 5, 7, 19, 71, 97, 3691, 191861, 138907099, 708158977, 26947261171
Offset: 1

Views

Author

Cino Hilliard, Jul 24 2004

Keywords

Comments

Next term is too large to include.
This is the prime subsequence of A002531. See also A086386 for numerators where both numerator and denominator are primes. - Ray Chandler, Aug 01 2004

Crossrefs

Programs

  • Mathematica
    Select[Numerator[Convergents[Sqrt[3],200]],PrimeQ] (* Harvey P. Dale, Nov 08 2022 *)
  • PARI
    \\ Continued fraction rational approximation of numeric constants f. m=steps.
    cfracnumprime(m,f) = { default(realprecision,3000); cf = vector(m+10); x=f; for(n=0,m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0,m, r=cf[m1+1]; forstep(n=m1,1,-1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(ispseudoprime(numer),print1(numer,", ")); ) }

Extensions

Offset corrected by Amiram Eldar, Jul 11 2024

A259592 Denominators of the other-side convergents to sqrt(3).

Original entry on oeis.org

1, 2, 4, 7, 15, 26, 56, 97, 209, 362, 780, 1351, 2911, 5042, 10864, 18817, 40545, 70226, 151316, 262087, 564719, 978122, 2107560, 3650401, 7865521, 13623482, 29354524, 50843527, 109552575, 189750626, 408855776, 708158977, 1525870529, 2642885282, 5694626340
Offset: 0

Views

Author

Clark Kimberling, Jul 20 2015

Keywords

Comments

Suppose that a positive irrational number r has continued fraction [a(0), a(1), ...]. Define sequences p(i), q(i), P(i), Q(i) from the numerators and denominators of finite continued fractions as follows:
p(i)/q(i) = [a(0), a(1), ... a(i)] and
P(i)/Q(i) = [a(0), a(1), ..., a(i) + 1].
The fractions p(i)/q(i) are the convergents to r, and the fractions P(i)/Q(i) are introduced here as the "other-side convergents" to r, because p(2k)/q(2k) < r < P(2k)/Q(2k) and P(2k+1)/Q(2k+1) < r < p(2k+1)/q(2k+1), for k >= 0.
Closeness of P(i)/Q(i) to r is indicated by |r - P(i)/Q(i)| < |p(i)/q(i) - P(i)/Q(i)| = 1/(q(i)Q(i)), for i >= 0.

Examples

			For r = sqrt(3), the first 7 other-side convergents are 4, 25/8, 355/113, 688/219, 104348/33215, 208341/66317, 312689/99532.  A comparison of convergents with other-side convergents:
i   p(i)/q(i)            P(i)/Q(i)   p(i)*Q(i) - P(i)*q(i)
0      1/1  < sqrt(3) <     2/1               -1
1      2/1  > sqrt(3) >     3/2                1
2      5/3  < sqrt(3) <     7/4               -1
3      7/4  > sqrt(3) >    12/7                1
4     19/11 < sqrt(3) <    26/15              -1
5     26/15 > sqrt(3) >    45/26               1
		

Crossrefs

Cf. A002530, A002531, A259593 (numerators).
Cf. A001353 (even bisection), A001075 (odd bisection).

Programs

  • Mathematica
    r = Sqrt[3]; a[i_] := Take[ContinuedFraction[r, 35], i];
    b[i_] := ReplacePart[a[i], i -> Last[a[i]] + 1];
    t = Table[FromContinuedFraction[b[i]], {i, 1, 35}]
    u = Denominator[t]
  • PARI
    Vec(-(x+1)*(x^2-x-1)/(x^4-4*x^2+1) + O(x^50)) \\ Colin Barker, Jul 21 2015

Formula

p(i)*Q(i) - P(i)*q(i) = (-1)^(i+1), for i >= 0, where a(i) = Q(i).
a(n) = 4*a(n-2) - a(n-4) for n>3. - Colin Barker, Jul 21 2015
G.f.: -(x+1)*(x^2-x-1) / (x^4-4*x^2+1). - Colin Barker, Jul 21 2015
a(2n) = A001353(n+1); a(2n+1) = A001075(n+1). - Antonio Alberto Olivares, Jul 23 2021
a(n) = 3^(n/2 + 1/2 - t)*((2 + sqrt(3))^t - (-1)^n*(2 - sqrt(3))^t)/2, where t = floor(n/2) + 1. - Ridouane Oudra, Aug 03 2021

A259593 Numerators of the other-side convergents to sqrt(3).

Original entry on oeis.org

2, 3, 7, 12, 26, 45, 97, 168, 362, 627, 1351, 2340, 5042, 8733, 18817, 32592, 70226, 121635, 262087, 453948, 978122, 1694157, 3650401, 6322680, 13623482, 23596563, 50843527, 88063572, 189750626, 328657725, 708158977, 1226567328, 2642885282, 4577611587
Offset: 0

Views

Author

Clark Kimberling, Jul 20 2015

Keywords

Comments

Suppose that a positive irrational number r has continued fraction [a(0), a(1), ...]. Define sequences p(i), q(i), P(i), Q(i) from the numerators and denominators of finite continued fractions as follows:
p(i)/q(i) = [a(0), a(1), ..., a(i)] and
P(i)/Q(i) = [a(0), a(1), ..., a(i) + 1].
The fractions p(i)/q(i) are the convergents to r, and the fractions P(i)/Q(i) are introduced here as the "other-side convergents" to r, because p(2k)/q(2k) < r < P(2k)/Q(2k) and P(2k+1)/Q(2k+1) < r < p(2k+1)/q(2k+1), for k >= 0.
Closeness of P(i)/Q(i) to r is indicated by |r - P(i)/Q(i)| < |p(i)/q(i) - P(i)/Q(i)| = 1/(q(i)Q(i)), for i >= 0.

Examples

			For r = sqrt(3), the first 7 other-side convergents are 4, 25/8, 355/113, 688/219, 104348/33215, 208341/66317, 312689/99532. A comparison of convergents with other-side convergents:
i   p(i)/q(i)            P(i)/Q(i)   p(i)*Q(i) - P(i)*q(i)
0      1/1  < sqrt(3) <     2/1               -1
1      2/1  > sqrt(3) >     3/2                1
2      5/3  < sqrt(3) <     7/4               -1
3      7/4  > sqrt(3) >    12/7                1
4     19/11 < sqrt(3) <    26/15              -1
5     26/15 > sqrt(3) >    45/26               1
		

Crossrefs

Cf. A002530, A002531, A259592 (denominators).
Cf. A001075 (even bisection), A005320 (odd bisection).

Programs

  • Mathematica
    r = Sqrt[3]; a[i_] := Take[ContinuedFraction[r, 35], i];
    b[i_] := ReplacePart[a[i], i -> Last[a[i]] + 1];
    t = Table[FromContinuedFraction[b[i]], {i, 1, 35}]
    v = Numerator[t]
  • PARI
    Vec(-(x^2-3*x-2)/(x^4-4*x^2+1) + O(x^50)) \\ Colin Barker, Jul 21 2015

Formula

p(i)*Q(i) - P(i)*q(i) = (-1)^(i+1), for i >= 0, where a(i) = P(i).
a(n) = 4*a(n-2) - a(n-4) for n>3. - Colin Barker, Jul 21 2015
G.f.: -(x^2-3*x-2) / (x^4-4*x^2+1). - Colin Barker, Jul 21 2015
a(n) = 3^(n/2 - t + 1)*((2 + sqrt(3))^t + (-1)^n*(2 - sqrt(3))^t)/2, where t = floor(n/2) + 1. - Ridouane Oudra, Aug 03 2021
Previous Showing 21-30 of 32 results. Next