Original entry on oeis.org
0, 2, 4, 18, 56, 202, 684, 2378, 8176, 28242, 97364, 335938, 1158696, 3997082, 13787644, 47560698, 164059616, 565922722, 1952143524, 6733900658, 23228518936, 80126541162, 276395677004, 953424059818, 3288826504656
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), May 03 2003
-
CoefficientList[Series[2x/(1-2x-5x^2), {x, 0, 25}], x]
LinearRecurrence[{2,5},{0,2},40] (* Harvey P. Dale, Nov 03 2011 *)
With[{c=Sqrt[6]}, Simplify/@ Table[((1-c)^n+c (1-c)^n-(1+c)^n+c (1+c)^n)/(5c),{n,30}]] (* Harvey P. Dale, Nov 03 2011 *)
A084097
Square array whose rows have e.g.f. exp(x)*cosh(sqrt(k)*x), k>=0, read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 7, 8, 1, 1, 1, 5, 10, 17, 16, 1, 1, 1, 6, 13, 28, 41, 32, 1, 1, 1, 7, 16, 41, 76, 99, 64, 1, 1, 1, 8, 19, 56, 121, 208, 239, 128, 1, 1, 1, 9, 22, 73, 176, 365, 568, 577, 256, 1, 1, 1, 10, 25, 92, 241, 576, 1093, 1552, 1393, 512, 1
Offset: 0
Array, A(n,k), begins:
.n\k.........0..1...2...3....4.....5......6......7.......8........9.......10
.0: A000012..1..1...1...1....1.....1......1......1.......1........1........1
.1: A000079..1..1...2...4....8....16.....32.....64.....128......256......512
.2: A001333..1..1...3...7...17....41.....99....239.....577.....1393.....3363
.3: A026150..1..1...4..10...28....76....208....568....1552.....4240....11584
.4: A046717..1..1...5..13...41...121....365...1093....3281.....9841....29525
.5: A084057..1..1...6..16...56...176....576...1856....6016....19456....62976
.6: A002533..1..1...7..19...73...241....847...2899...10033....34561...119287
.7: A083098..1..1...8..22...92...316...1184...4264...15632....56848...207488
.8: A084058..1..1...9..25..113...401...1593...5993...23137....88225...338409
.9: A003665..1..1..10..28..136...496...2080...8128...32896...130816...524800
10: A002535..1..1..11..31..161...601...2651..10711...45281...186961...781451
11: A133294..1..1..12..34..188...716...3312..13784...60688...259216..1125312
12: A090042..1..1..13..37..217...841...4069..17389...79537...350353..1575613
13: A125816..1..1..14..40..248...976...4928..21568..102272...463360..2153984
14: A133343..1..1..15..43..281..1121...5895..26363..129361...601441..2884575
15: A133345..1..1..16..46..316..1276...6976..31816..161296...768016..3794176
16: A120612..1..1..17..49..353..1441...8177..37969..198593...966721..4912337
17: A133356..1..1..18..52..392..1616...9504..44864..241792..1201408..6271488
18: A125818..1..1..19..55..433..1801..10963..52543..291457..1476145..7907059
25: A083578
- _Robert G. Wilson v_, Jan 02 2013
Antidiagonal triangle, T(n,k), begins:
1;
1, 1;
1, 1, 1;
1, 1, 2, 1;
1, 1, 3, 4, 1;
1, 1, 4, 7, 8, 1;
1, 1, 5, 10, 17, 16, 1;
1, 1, 6, 13, 28, 41, 32, 1;
1, 1, 7, 16, 41, 76, 99, 64, 1;
1, 1, 8, 19, 56, 121, 208, 239, 128, 1;
1, 1, 9, 22, 73, 176, 365, 568, 577, 256, 1;
1, 1, 10, 25, 92, 241, 576, 1093, 1552, 1393, 512, 1;
Rows:
A000012,
A000079,
A001333,
A026150,
A046717,
A084057,
A002533,
A083098,
A084058,
A003665,
-
function A084097(n,k)
if k eq 0 then return 1;
else return k*2^(k-1)*(&+[ Binomial(k-j,j)*((n-k-1)/4)^j/(k-j): j in [0..Floor(k/2)]]);
end if; return A084097; end function;
[A084097(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 15 2022
-
T[j_, k_] := Expand[((1 + Sqrt[j])^k + (1 - Sqrt[j])^k)/2]; T[1, 0] = 1; Table[ T[j - k, k], {j, 0, 11}, {k, 0, j}] // Flatten (* Robert G. Wilson v, Jan 02 2013 *)
-
def A084097(n,k):
if (k==0): return 1
else: return k*2^(k-1)*sum( binomial(k-j,j)*((n-k-1)/4)^j/(k-j) for j in range( (k+2)//2 ) )
flatten([[A084097(n,k) for k in range(n+1)] for n in range(15)]) # G. C. Greubel, Oct 15 2022
A154237
a(n) = ( (6 + sqrt(6))^n - (6 - sqrt(6))^n )/(2*sqrt(6)).
Original entry on oeis.org
1, 12, 114, 1008, 8676, 73872, 626184, 5298048, 44791056, 378551232, 3198883104, 27030060288, 228394230336, 1929828955392, 16306120554624, 137778577993728, 1164159319286016, 9836554491620352, 83113874320863744, 702269857101754368
Offset: 1
Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-6); S:=[ ((6+r)^n-(6-r)^n)/(2*r): n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 07 2009
-
I:=[1,12]; [n le 2 select I[n] else 12*Self(n-1)-30*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Sep 07 2016
-
Join[{a=1,b=12},Table[c=12*b-30*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2011*)
LinearRecurrence[{12, -30}, {1, 12}, 25] (* or *) Table[( (6 + sqrt(6))^n - (6 - sqrt(6))^n )/(2*sqrt(6)), {n,1,25}] (* G. C. Greubel, Sep 07 2016 *)
-
[lucas_number1(n,12,30) for n in range(1, 21)] # Zerinvary Lajos, Apr 27 2009
A083695
a(n) = 2*a(n-1) + 5*a(n-2), with a(0) = 0, a(1) = 3.
Original entry on oeis.org
0, 3, 6, 27, 84, 303, 1026, 3567, 12264, 42363, 146046, 503907, 1738044, 5995623, 20681466, 71341047, 246089424, 848884083, 2928215286, 10100850987, 34842778404, 120189811743, 414593515506, 1430136089727, 4933239756984, 17017159962603, 58700518710126
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), May 03 2003
-
I:=[0,3]; [n le 2 select I[n] else 2*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 07 2013
-
CoefficientList[Series[3x/(1-2x-5x^2), {x, 0, 25}], x]
LinearRecurrence[{2, 5}, {0, 3}, 27] (* Arkadiusz Wesolowski, May 21 2013 *)
A160444
Expansion of g.f.: x^2*(1 + x - x^2)/(1 - 2*x^2 - 2*x^4).
Original entry on oeis.org
0, 1, 1, 1, 2, 4, 6, 10, 16, 28, 44, 76, 120, 208, 328, 568, 896, 1552, 2448, 4240, 6688, 11584, 18272, 31648, 49920, 86464, 136384, 236224, 372608, 645376, 1017984, 1763200, 2781184, 4817152, 7598336, 13160704, 20759040, 35955712, 56714752
Offset: 1
Willibald Limbrunner (w.limbrunner(AT)gmx.de), May 14 2009
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- W. Beinert, Villardscher Teilungskanon, Lexikon der Typographie
- W. Limbrunner, Das Quadrat, ein Wunder der Geometrie. (in German)
- Willibald Limbrunner, Family of sequences for k
- M-T. Zenner, Villard de Honnecourt and Euclidean Geoometry, Nexus Network Journal 4 (2002) 65-78.
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,2).
-
I:=[0,1,1,1]; [n le 4 select I[n] else 2*(Self(n-2) +Self(n-4)): n in [1..40]]; // G. C. Greubel, Feb 18 2023
-
LinearRecurrence[{0,2,0,2}, {0,1,1,1}, 40] (* G. C. Greubel, Feb 18 2023 *)
-
@CachedFunction
def a(n): # a = A160444
if (n<5): return ((n+1)//3)
else: return 2*(a(n-2) + a(n-4))
[a(n) for n in range(1, 41)] # G. C. Greubel, Feb 18 2023
Original entry on oeis.org
2, 101, 1998541, 3366950329, 803128907400221, 16099934940822131461, 2279520764596558292681, 6469963748546758449049574741, 10900112859698650263468714158129, 707398563162966192697450635044051857198371361627935450689
Offset: 1
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.
-
Select[LinearRecurrence[{2, 5}, {0, 1}, 150], PrimeQ] (* Amiram Eldar, Jun 30 2024 *)
-
primenum(n,k,typ) = /* k=mult,typ=1 num,2 denom. output prime num or denom. */ { local(a,b,x,tmp,v); a=1;b=1; for(x=1,n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1,v=a,v=b); if(isprime(v),print1(v","); ) ); print(); print(a/b+.); }
A247584
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 3*a(n-5) with a(0) = a(1) = a(2) = a(3) = a(4) = 1.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 13, 43, 113, 253, 509, 969, 1849, 3719, 8009, 18027, 40897, 91257, 198697, 423777, 894081, 1886011, 4007301, 8594411, 18560081, 40181493, 86872293, 187197193, 402060793, 861827743, 1846685729, 3960390059, 8504658049, 18283290609, 39325827729
Offset: 0
The following sequences belong to the same family:
A000129,
A001333,
A002532,
A002533,
A002605,
A015518,
A015519,
A026150,
A046717,
A052101,
A052102,
A052103,
A063727,
A083098,
A083099,
A083100,
A084057,
A093406,
A247344.
-
[n le 5 select 1 else 5*Self(n-1) -10*Self(n-2) +10*Self(n-3) -5*Self(n-4) +3*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Jul 11 2015
-
m:=50; S:=series( (1-x)^4/(1 -5*x +10*x^2 -10*x^3 +5*x^4 -3*x^5), x, m+1):
seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 15 2021
-
LinearRecurrence[{5,-10,10,-5,3}, {1,1,1,1,1}, 50] (* Vincenzo Librandi, Jul 11 2015 *)
-
makelist(sum(2^k*binomial(n,5*k), k, 0, floor(n/5)), n, 0, 50); /* Alexander Samokrutov, Jul 11 2015 */
-
Vec((1-x)^4/(1-5*x+10*x^2-10*x^3+5*x^4-3*x^5) + O(x^100)) \\ Colin Barker, Sep 22 2014
-
[sum(2^j*binomial(n, 5*j) for j in (0..n//5)) for n in (0..50)] # G. C. Greubel, Apr 15 2021
A292848
a(n) is the smallest prime of form (1/2)*((1 + sqrt(2*n))^k + (1 - sqrt(2*n))^k).
Original entry on oeis.org
3, 5, 7, 113, 11, 13, 43, 17, 19, 61, 23, 73, 79, 29, 31, 97, 103, 37, 1241463763, 41, 43, 664973, 47, 2593, 151, 53, 163, 14972833, 59, 61, 4217, 193, 67, 23801, 71, 73, 223, 229, 79, 241, 83, 7561, 61068909859, 89, 271, 277, 283, 97, 10193, 101, 103, 313
Offset: 1
For k = {1, 2, 3, 4}, (1/2)((1 + sqrt(8))^k + (1 - sqrt(8))^k) = {1, 9, 25, 113}. 113 is prime, so a(4) = 113.
Cf.
A001333,
A026150,
A046717,
A084057,
A002533,
A083098,
A083100,
A003665,
A002535,
A133294,
A090042,
A125816,
A133343,
A133345,
A120612,
A133356,
A125818.
-
f:= proc(n) local a,b,t;
a:= 1; b:= 1;
do
t:= a; a:= 2*a + (2*n-1)*b;
if isprime(a) then return a fi;
b:= t;
od
end proc:
map(f, [$1..100]); # Robert Israel, Sep 26 2017
-
f[n_, k_] := ((1 + Sqrt[n])^k + (1 - Sqrt[n])^k)/2;
Table[k = 1; While[! PrimeQ[Expand@f[2n, k]], k++]; Expand@f[2n, k], {n, 52}]
A110908
Start with the fraction 1/1, list n when the numerator and denominator are both prime for fractions built according to the rule: Add old top and old bottom to get the new bottom, add old top and 6 times the old bottom to get the new top.
Original entry on oeis.org
The first four fractions according to the rule are
n,
1,7/2
2,19/9
3,73/28
4,241/101
n=2,3 did not make the list because 9 and 28 are not prime.
- Prime Obsession, John Derbyshire, Joseph Henry Press, April 2004, p. 16.
-
A:= gfun:-rectoproc({a(n+2)-2*a(n+1)-5*a(n), a(0)=1, a(1)=7},a(n), remember):
B:= gfun:-rectoproc({a(n+2)-2*a(n+1)-5*a(n), a(0)=1, a(1)=2},a(n),remember):
select(n -> isprime(A(n)) and isprime(B(n)), [1,seq(seq(6*k+j,j=[0,4]),k=0..1000)]); # Robert Israel, Aug 12 2016
-
Position[Rest@ NestList[{Numerator@ #, Denominator@ #} &[(#1 + 6 #2)/(#1 + #2)] & @@ # &, {1, 1}, 2000], k_ /; Times @@ Boole@ Map[PrimeQ, k] == 1] // Flatten (* Michael De Vlieger, May 13 2017 *)
-
primenumdenom(n,k) = { local(a,b,x,tmp,v); a=1;b=1; for(x=1,n, tmp=b; b=a+b; a=k*tmp+a; if(tmp=1,v=a,v=b); if(ispseudoprime(a)&ispseudoprime(b),print1(x","); ) ); print(); print(a/b+.) }
Comments