cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 113 results. Next

A011755 a(n) = Sum_{k=1..n} k*phi(k).

Original entry on oeis.org

1, 3, 9, 17, 37, 49, 91, 123, 177, 217, 327, 375, 531, 615, 735, 863, 1135, 1243, 1585, 1745, 1997, 2217, 2723, 2915, 3415, 3727, 4213, 4549, 5361, 5601, 6531, 7043, 7703, 8247, 9087, 9519, 10851, 11535, 12471, 13111, 14751, 15255, 17061, 17941, 19021, 20033
Offset: 1

Views

Author

Keywords

Comments

a(n) = Sum_{(x,y): 1<=x<=y<=n, 1=gcd(x,y)} y. Sum_{(x,y): 1<=x<=y<=n, 1=gcd(x,y)} x = (a(n)+1)/2. - Vladeta Jovovic, Jan 02 2003
Equals row sums of triangle A110663. Example: a(4) = 17 = (6 + 5 + 4 + 2), where row 4 of triangle A110663 = (6, 5, 4, 2). - Gary W. Adamson, Jul 26 2008

Crossrefs

Partial sums of A002618.

Programs

  • Mathematica
    Accumulate[Table[k*EulerPhi[k], {k, 1, 50}]] (* Vaclav Kotesovec, Sep 10 2018 *)
  • PARI
    a(n) = sum(k=1, n, k*eulerphi(k)); \\ Michel Marcus, Feb 13 2017
    
  • Python
    from sympy import totient
    def A011755(n): return sum(k*totient(k) for k in range(1,n+1)) # Chai Wah Wu, Feb 21 2023

Formula

Asymptotically: a(n) ~ C*n^3 with C=0.20264.... - Benoit Cloitre, Jan 14 2002
Asymptotically: a(n) ~ (2/Pi^2)*n^3. - Vladeta Jovovic, Jan 02 2003
a(n) = Sum_{k=1..n} phi(k^2). - Vaclav Kotesovec, May 08 2024

A238533 Number of solutions to gcd(x^2 + y^2 + z^2 + t^2 + h^2, n) = 1 with x,y,z,t,h in [0,n-1].

Original entry on oeis.org

1, 16, 162, 512, 2500, 2592, 14406, 16384, 39366, 40000, 146410, 82944, 342732, 230496, 405000, 524288, 1336336, 629856, 2345778, 1280000, 2333772, 2342560, 6156502, 2654208, 7812500, 5483712, 9565938, 7375872, 19803868, 6480000, 27705630, 16777216, 23718420
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. n^k * a(n): A000010 (k=-4), A002618 (k=-3), A053191 (k=-2), A189393 (k=-1), A239442 (k=2), A239443 (k=4).

Programs

  • Mathematica
    g[n_, 5] := g[n, 5] = Sum[If[GCD[x^2 + y^2 + z^2 + t^2 + h^2, n] == 1, 1, 0], {x, n}, {y, n}, {z, n}, {t, n}, {h, n}];Table[g[n,5] , {n, 1, 15}]
    Table[n^4 * EulerPhi[n], {n, 1, 33}] (* Amiram Eldar, Dec 06 2020 *)

Formula

From Álvar Ibeas, Nov 24 2017: (Start)
a(n) = phi(n^5) = n^4 * phi(n), where phi=A000010.
Dirichlet g.f.: zeta(s - 5) / zeta(s - 4). The n-th term of the Dirichlet inverse is n^4 * A023900(n) = (-1)^omega(n) * a(n) / A003557(n), where omega = A001221.
(End)
Sum_{k=1..n} a(k) ~ n^6 / Pi^2. - Vaclav Kotesovec, Feb 02 2019
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^6 - p^5 - p + 1)) = 1.07162935672651489627... - Amiram Eldar, Dec 06 2020

A262311 Number of ordered ways to write n = x^2 + y^2 + phi(z^2) (0 <= x <= y and z > 0) with y or z prime, where phi(.) is Euler's totient function given by A000010.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 2, 1, 1, 3, 3, 2, 1, 2, 2, 3, 2, 2, 3, 3, 3, 4, 1, 2, 2, 3, 3, 2, 1, 3, 3, 1, 2, 2, 2, 3, 4, 4, 1, 3, 2, 6, 3, 2, 4, 4, 3, 1, 3, 4, 5, 5, 3, 3, 3, 4, 4, 8, 4, 3, 5, 4, 2, 2, 3, 6, 6, 1, 2, 5, 3, 2, 4, 5, 2, 2, 2, 3, 3, 2, 3, 6, 3, 2, 3, 3, 4, 4, 3, 3, 4, 5, 4, 3, 3, 1, 4, 3, 2, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 01 2015

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1.
I have verified this for n up to 10^6, and found that a(n) = 1 for the following 67 values of n: 2, 3, 4, 5, 8, 9, 13, 23, 29, 32, 39, 48, 68, 96, 108, 140, 144, 215, 264, 268, 324, 328, 384, 396, 404, 460, 471, 476, 500, 503, 684, 716, 759, 764, 768, 788, 860, 908, 936, 1032, 1076, 1112, 1148, 1164, 1259, 1344, 1399, 1443, 1484, 1503, 1551, 1839, 1868, 2088, 2723, 2883, 3744, 4296, 5963, 6804, 8328, 9680, 10331, 11948, 21524, 39716, 94415. It seems that a(n) = 1 for no other values of n.
It is easy to see that all the numbers phi(n^2) = n*phi(n) (n = 1,2,3,...) are pairwise distinct.
See also A262781 for a similar conjecture.

Examples

			a(2) = 1 since 2 = 0^2 + 0^2 + phi(2^2) with 2 prime.
a(5) = 1 since 5 = 0^2 + 2^2 + phi(1^2) with 2 prime.
a(23) = 1 since 23 = 1^2 + 4^2 + phi(3^2) with 3 prime.
a(29) = 1 since 29 = 0^2 + 3^2 + phi(5^2) with 3 and 5 both prime.
a(48) = 1 since 48 = 2^2 + 2^2 + phi(10^2) with 2 prime.
a(96) = 1 since 96 = 3^2 + 9^2 + phi(3^2) with 3 prime.
a(140) = 1 since 140 = 7^2 + 7^2 + phi(7^2) with 7 prime.
a(471) = 1 since 471 = 0^2 + 19^2 + phi(11^2) with 19 and 11 both prime.
a(476) = 1 since 476 = 8^2 + 16^2 + phi(13^2) with 13 prime.
a(936) = 1 since 936 = 4^2 + 30^2 + phi(5^2) with 5 prime.
a(1112) = 1 since 1112 = 23^2 + 23^2 + phi(9^2) with 23 prime.
a(1839) = 1 since 1839 = 3^2 + 30^2 + phi(31^2) with 31 prime.
a(1868) = 1 since 1868 = 2^2 + 2^2 + phi(62^2) with 2 prime.
a(2088) = 1 since 2088 = 15^2 + 39^2 + phi(19^2) with 19 prime.
a(2723) = 1 since 2723 = 34^2 + 35^2 + phi(19^2) with 19 prime.
a(2883) = 1 since 2883 = 21^2 + 44^2 + phi(23^2) with 23 prime.
a(3744) = 1 since 3744 = 4^2 + 54^2 + phi(29^2) with 29 prime.
a(4296) = 1 since 4296 = 26^2 + 60^2 + phi(5^2) with 5 prime.
a(5963) = 1 since 5963 = 26^2 + 59^2 + phi(43^2) with 59 and 43 both prime.
a(6804) = 1 since 6804 = 40^2 + 72^2 + phi(5^2) with 5 prime.
a(8328) = 1 since 8328 = 1^2 + 39^2 + phi(83^2) with 83 prime.
a(9680) = 1 since 9680 = 68^2 + 70^2 + phi(13^2) with 13 prime.
a(10331) = 1 since 10331 = 17^2 + 100^2 + phi(7^2) with 7 prime.
a(11948) = 1 since 11948 = 5^2 + 109^2 + phi(7^2) with 109 and 7 both prime.
a(21524) = 1 since 21524 = 59^2 + 109^2 + phi(79^2) with 109 and 79 both prime.
a(39716) = 1 since 39716 = 5^2 + 17^2 + phi(199^2) with 17 and 199 both prime.
a(94415) = 1 since 94415 = 115^2 + 178^2 + phi(223^2) with 223 prime.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]
    f[n_]:=EulerPhi[n^2]
    Do[r=0;Do[If[f[z]>n,Goto[aa]];Do[If[SQ[n-f[z]-x^2]&&(PrimeQ[z]||PrimeQ[Sqrt[n-f[z]-x^2]]),r=r+1],{x,0,Sqrt[(n-f[z])/2]}];Label[aa];Continue,{z,1,n}];Print[n," ",r];Continue,{n,1,100}]

A053650 Cototient function of n^2.

Original entry on oeis.org

0, 2, 3, 8, 5, 24, 7, 32, 27, 60, 11, 96, 13, 112, 105, 128, 17, 216, 19, 240, 189, 264, 23, 384, 125, 364, 243, 448, 29, 660, 31, 512, 429, 612, 385, 864, 37, 760, 585, 960, 41, 1260, 43, 1056, 945, 1104, 47, 1536, 343, 1500, 969, 1456, 53, 1944, 825, 1792, 1197
Offset: 1

Views

Author

Labos Elemer, Feb 18 2000

Keywords

Comments

Seems to be invertible like n*Phi(n). Compare with A002618, A038040.

Crossrefs

Programs

Formula

a(n) = n*(n - phi(n)) = n^2 - n*phi(n) = Cototient(n^2) = A051953(A000290(n)).
a(n) = n^2 - A002618(n).
For p prime, Cototient(p)=1 and a(p)=p.
a(n) = n*cototient(n) = n*A051953(n). - Omar E. Pol, Nov 22 2012
Dirichlet g.f.: zeta(s-2)*(1 - 1/zeta(s-1)). - Ilya Gutkovskiy, Jul 26 2016
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 1 - 6/Pi^2 (A229099). - Amiram Eldar, Dec 15 2023

A047916 Triangular array read by rows: a(n,k) = phi(n/k)*(n/k)^k*k! if k|n else 0 (1<=k<=n).

Original entry on oeis.org

1, 2, 2, 6, 0, 6, 8, 8, 0, 24, 20, 0, 0, 0, 120, 12, 36, 48, 0, 0, 720, 42, 0, 0, 0, 0, 0, 5040, 32, 64, 0, 384, 0, 0, 0, 40320, 54, 0, 324, 0, 0, 0, 0, 0, 362880, 40, 200, 0, 0, 3840, 0, 0, 0, 0, 3628800, 110, 0, 0, 0, 0, 0, 0, 0, 0, 0, 39916800, 48, 144
Offset: 1

Views

Author

Keywords

Comments

T(n,k) = A054523(n,k) * A010766(n,k)^A002260(n,k) * A166350(n,k). - Reinhard Zumkeller, Jan 20 2014

Examples

			1; 2,2; 6,0,6; 8,8,0,24; 20,0,0,0,120; 12,36,48,0,0,720; ...
		

References

  • J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.

Crossrefs

A064649 gives the row sums.
Cf. A002618 (left edge), A000142 (right edge), A049820 (zeros per row), A000005 (nonzeros per row).
See also A247917, A047918, A047919.

Programs

  • Haskell
    import Data.List (zipWith4)
    a047916 n k = a047916_tabl !! (n-1) !! (k-1)
    a047916_row n = a047916_tabl !! (n-1)
    a047916_tabl = zipWith4 (zipWith4 (\x u v w -> x * v ^ u * w))
                   a054523_tabl a002260_tabl a010766_tabl a166350_tabl
    -- Reinhard Zumkeller, Jan 20 2014
    
  • Mathematica
    a[n_, k_] := If[Divisible[n, k], EulerPhi[n/k]*(n/k)^k*k!, 0]; Flatten[ Table[ a[n, k], {n, 1, 12}, {k, 1, n}]] (* Jean-François Alcover, May 04 2012 *)
  • PARI
    a(n,k)=if(n%k, 0, eulerphi(n/k)*(n/k)^k*k!) \\ Charles R Greathouse IV, Feb 09 2017

A323333 The Euler phi function values of the powerful numbers, A000010(A001694(n)).

Original entry on oeis.org

1, 2, 4, 6, 8, 20, 18, 16, 12, 42, 32, 24, 54, 40, 36, 110, 100, 64, 48, 156, 84, 80, 72, 120, 162, 128, 96, 272, 108, 294, 342, 168, 160, 144, 252, 220, 200, 256, 506, 192, 500, 216, 360, 312, 486, 336, 320, 812, 288, 240, 930, 440, 324, 400, 512, 660, 600
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The sum of the reciprocals of all the terms of this sequence is Murata's constant Product_{p prime}(1 + 1/(p-1)^2) (A065485).
Sequence is injective: no value occurs more than once. - Amiram Eldar and Antti Karttunen, Sep 30 2019

Crossrefs

Cf. A000010, A001694, A002618 (a subsequence), A065485, A082695, A112526, A323332.

Programs

  • Mathematica
    EulerPhi /@ Join[{1}, Select[Range@ 1200, Min@ FactorInteger[#][[All, 2]] > 1 &]] (* after Harvey P. Dale at A001694 *)
  • PARI
    lista(nn) = apply(x->eulerphi(x), select(x->ispowerful(x), vector(nn, k, k))); \\ Michel Marcus, Jan 11 2019

A047918 Triangular array read by rows: a(n,k) = Sum_{d|k} mu(d)*U(n,k/d) if k|n else 0, where U(n,k) = A047916(n,k) (1<=k<=n).

Original entry on oeis.org

1, 2, 0, 6, 0, 0, 8, 0, 0, 16, 20, 0, 0, 0, 100, 12, 24, 36, 0, 0, 648, 42, 0, 0, 0, 0, 0, 4998, 32, 32, 0, 320, 0, 0, 0, 39936, 54, 0, 270, 0, 0, 0, 0, 0, 362556, 40, 160, 0, 0, 3800, 0, 0, 0, 0, 3624800, 110, 0, 0, 0, 0, 0, 0, 0, 0, 0, 39916690, 48, 96
Offset: 1

Views

Author

Keywords

References

  • J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.

Crossrefs

Programs

  • Haskell
    a047918 n k = sum [a008683 (fromIntegral d) * a047916 n (k `div` d) |
                       mod n k == 0, d <- [1..k], mod k d == 0]
    a047918_row n = map (a047918 n) [1..n]
    a047918_tabl = map a047918_row [1..]
    -- Reinhard Zumkeller, Mar 19 2014
  • Mathematica
    U[n_, k_] := If[ Divisible[n, k], EulerPhi[n/k]*(n/k)^k*k!, 0]; a[n_, k_] := Sum[ If[ Divisible[n, k], MoebiusMu[d]*U[n, k/d], 0], {d, Divisors[k]}]; Flatten[ Table[ a[n, k], {n, 1, 12}, {k, 1, n}]] (* Jean-François Alcover, May 04 2012 *)

Extensions

Offset corrected by Reinhard Zumkeller, Mar 19 2014

A053192 a(n) is the cototient of n^3.

Original entry on oeis.org

0, 4, 9, 32, 25, 144, 49, 256, 243, 600, 121, 1152, 169, 1568, 1575, 2048, 289, 3888, 361, 4800, 3969, 5808, 529, 9216, 3125, 9464, 6561, 12544, 841, 19800, 961, 16384, 14157, 20808, 13475, 31104, 1369, 28880, 22815, 38400, 1681, 52920, 1849, 46464
Offset: 1

Views

Author

Labos Elemer, Mar 02 2000

Keywords

Comments

For n^k, n^k - EulerPhi(n^k) = n^(k-1)*(n-EulerPhi(n)), or cototient(n^k) = n^(k-1)*cototient(n). A similar relation holds for Euler totient function.

Crossrefs

Programs

Formula

a(n) = n^2*Cototient(n) = A051953(n^3) = n^3 - EulerPhi(n^3) = Cototient(n^3).
a(prime(n)) = A051953(prime(n)^3) = A001248(n).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = 1 - 6/Pi^2 (A229099). - Amiram Eldar, Dec 15 2023

A058161 Number of labeled cyclic groups with a fixed identity.

Original entry on oeis.org

1, 1, 1, 3, 6, 60, 120, 1260, 6720, 90720, 362880, 9979200, 39916800, 1037836800, 10897286400, 163459296000, 1307674368000, 59281238016000, 355687428096000, 15205637551104000, 202741834014720000, 5109094217170944000, 51090942171709440000
Offset: 1

Views

Author

Christian G. Bower, Nov 14 2000

Keywords

Comments

Degree of Lagrange resolvent of polynomial of n-th degree. Equals degree of symmetric group of order n divided by order of metacyclic group of order n. - Artur Jasinski, Jan 22 2008

Examples

			a(4)=3 because we have: <(1234)> = <(1432)>,  <(1243)> = <(1342)>,  <(1324)> = <(1423)>. - _Geoffrey Critzer_, Sep 07 2015
		

References

  • J. L. Lagrange, Oeuvres, Vol. III Paris 1869.

Crossrefs

a(n) = A000142(n-1)/A000010(n) = A034381(n)/n.
Cf. A002618.

Programs

  • Mathematica
    Table[n!/(n EulerPhi[n]), {n, 1, 20}] (* Artur Jasinski, Jan 22 2008 *)

Formula

a(n) = (n-1)!/phi(n).
a(n) = n!/A002618(n) - Artur Jasinski, Jan 22 2008

A082473 Numbers n such that n = phi(x)*core(x) for some x <= n, where phi(x) is the Euler totient function and core(x) the squarefree part of x.

Original entry on oeis.org

1, 2, 6, 8, 12, 20, 32, 40, 42, 48, 54, 84, 108, 110, 120, 128, 156, 160, 192, 220, 240, 252, 272, 312, 336, 342, 432, 486, 500, 504, 506, 512, 544, 640, 660, 684, 768, 812, 840, 880, 930, 936, 960, 972, 1000, 1012, 1080, 1248, 1320, 1332, 1344, 1624, 1632
Offset: 1

Views

Author

Benoit Cloitre, Apr 27 2003

Keywords

Comments

Also numbers n such that n = y*phi(y) for a unique positive integer y (see A194507). - Franz Vrabec, Aug 27 2011
Sequence A002618 sorted into ascending order; also A327171 sorted into ascending order, with duplicate terms removed. Indices of nonzero terms in A327170 and in A327172. - Antti Karttunen, Sep 29 2019

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 3, p. 224.

Crossrefs

Programs

  • Mathematica
    With[{nn = 1700}, TakeWhile[Union@ Array[EulerPhi[#] (Sqrt@ # /. (c_: 1) a_^(b_: 0) :> (c a^b)^2) &, nn], # <= nn &]] (* Michael De Vlieger, Sep 29 2019, after Bill Gosper at A007913 *)
  • PARI
    isok(n) = {for (x=1, n, if (eulerphi(x)*core(x) == n, return (1));); return (0);} \\ Michel Marcus, Dec 04 2013

Formula

From Antti Karttunen, Sep 29 2019: (Start)
a(n) = A002618(A194507(n)).
A327172(a(n)) = A194507(n).
(End)
The number of terms not exceeding x is ~ c * sqrt(x), where c = Product_{p prime} (1 + 1/sqrt(p*(p-1)) - 1/p) = 1.3651304521... (Janous, 1988). - Amiram Eldar, Mar 10 2021
Previous Showing 11-20 of 113 results. Next