cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 104 results. Next

A321835 a(n) = Sum_{d|n, n/d==1 mod 4} d^11 - Sum_{d|n, n/d==3 mod 4} d^11.

Original entry on oeis.org

1, 2048, 177146, 4194304, 48828126, 362795008, 1977326742, 8589934592, 31380882463, 100000002048, 285311670610, 743004176384, 1792160394038, 4049565167616, 8649707208396, 17592186044416, 34271896307634, 64268047284224, 116490258898218
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A101455.
Cf. A321807 - A321836 for related sequences.
Glaisher's E'_i (i=0..12): A002654, A050469, A050470, A050471, A050468, A321829, A321830, A321831, A321832, A321833, A321834, this sequence, A321836.

Programs

  • Mathematica
    s[n_,r_] := DivisorSum[n, #^11 &, Mod[n/#,4]==r &]; a[n_] := s[n,1] - s[n,3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(11*e+11) - s[p]^(e+1))/(p^11 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    apply( a(n)=sumdiv(n,d,if(bittest(n\d,0),(2-n\d%4)*d^11)), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^11*x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Nov 26 2018
From Amiram Eldar, Nov 04 2023: (Start)
Multiplicative with a(p^e) = (p^(11*e+11) - A101455(p)^(e+1))/(p^11 - A101455(p)).
Sum_{k=1..n} a(k) ~ c * n^12 / 12, where c = beta(12) = 0.99999812235..., and beta is the Dirichlet beta function. (End)
a(n) = Sum_{d|n} (n/d)^11*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024

A071385 Number of points (i,j) on the circumference of a circle around (0,0) with squared radius A071383(n).

Original entry on oeis.org

1, 4, 8, 12, 16, 24, 32, 36, 48, 64, 72, 80, 96, 128, 144, 160, 192, 256, 288, 320, 384, 512, 576, 640, 768, 864, 1024, 1152, 1280, 1536, 1728, 2048, 2304, 2560, 3072, 3456, 3840, 4096, 4608, 5120, 6144, 6912, 7680, 8192, 9216, 10240, 11520, 12288, 13824, 15360
Offset: 1

Views

Author

Hugo Pfoertner, May 23 2002

Keywords

Examples

			Circles with radius 1 and 2 have 4 lattice points on their circumference, so a(1)=4. A circle with radius sqrt(5) passes through 8 lattice points of the shape (2,1), so a(2)=8. A circle with radius 5 passes through 4 lattice points of shape (5,0) and through 8 points of shape (4,3), so a(3)=4+8=12
A071383(11) = 5^2 * 13^2 * 17^1 = 71825. Therefore A071385(11) = 4*(2+1)*(2+1)*(1+1) = 72.
		

Crossrefs

Programs

  • PARI
    my(v=list(10^15), rec=0); print1(1, ", "); for(n=1, #v, if(numdiv(v[n])>rec, rec=numdiv(v[n]); print1(4*rec, ", "))) \\ Jianing Song, May 20 2021, see program for A054994

Formula

a(n) = 4 * Product_{k=1..klim} (e_k + 1), where klim and e_1 >= e_2 >= ... >= e_klim > 0 are known from A071383(n) = Product_{k=1..klim} p_k^e_k, with p_k = k-th prime of the form 4i+1. (J. H. Conway)
a(n) = 4*A000005(A071383(n)) for n > 1.
a(n) = A004018(A071383(n)).
a(n) = A002654(A071383(n)) for n > 1. - Jianing Song, May 20 2021
a(n) = 4*A344470(n-1) for n > 1. - Hugo Pfoertner, Sep 04 2022

A133675 Negative discriminants with form class number 1 (negated).

Original entry on oeis.org

3, 4, 7, 8, 11, 12, 16, 19, 27, 28, 43, 67, 163
Offset: 1

Views

Author

N. J. A. Sloane, May 16 2003

Keywords

Comments

The list on p. 260 of Cox is missing -12, the list in Theorem 7.30 on p. 149 is correct. - Andrew V. Sutherland, Sep 02 2012
Let b(k) be the number of integer solutions of f(x,y) = k, where f(x,y) is the principal binary quadratic form with discriminant d<0 (i.e., f(x,y) = x^2 - (d/4)*y^2 if 4|d, x^2 + x*y + ((1-d)/4)*y^2 otherwise), then this sequence lists |d| such that {b(k)/b(1): k>=1} is multiplicative. See Crossrefs for the actual sequences. - Jianing Song, Nov 20 2019

References

  • D. A. Cox, Primes of the form x^2+ny^2, Wiley, New York, 1989, pp. 149, 260.
  • D. E. Flath, Introduction to Number Theory, Wiley-Interscience, 1989.

Crossrefs

The sequences {b(k): k>=0}: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), A033715 (d=-8), A028609 (d=-11), A033716 (d=-12), A004531 (d=-16), A028641 (d=-19), A138805 (d=-27), A033719 (d=-28), A138811 (d=-43), A318984 (d=-67), A318985 (d=-163).
The sequences {b(k)/b(1): k>=1}: A002324 (d=-3), A002654 (d=-4), A035182 (d=-7), A002325 (d=-8), A035179 (d=-11), A096936 (d=-12), A113406 (d=-16), A035171 (d=-19), A138806 (d=-27), A110399 (d=-28), A035147 (d=-43), A318982 (d=-67), A318983 (d=-163).

Programs

  • PARI
    ok(n)={(-n)%4<2 && quadclassunit(-n).no == 1} \\ Andrew Howroyd, Jul 20 2018

Extensions

Corrected by David Brink, Dec 29 2007

A145392 Number of inequivalent sublattices of index n in square lattice, where two sublattices are considered equivalent if one can be rotated by a multiple of Pi/2 to give the other.

Original entry on oeis.org

1, 2, 2, 4, 4, 6, 4, 8, 7, 10, 6, 14, 8, 12, 12, 16, 10, 20, 10, 22, 16, 18, 12, 30, 17, 22, 20, 28, 16, 36, 16, 32, 24, 28, 24, 46, 20, 30, 28, 46, 22, 48, 22, 42, 40, 36, 24, 62, 29, 48, 36, 50, 28, 60, 36, 60, 40, 46, 30, 84, 32, 48, 52, 64, 44, 72, 34, 64, 48, 72
Offset: 1

Views

Author

N. J. A. Sloane, Feb 23 2009

Keywords

Comments

From Andrey Zabolotskiy, Mar 12 2018: (Start)
The parent lattice of the sublattices under consideration has Patterson symmetry group p4, and two sublattices are considered equivalent if they are related via a symmetry from that group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145391 (c2mm), A145393 (p4mm), A145394 (p6), A003051 (p6mm).
If we count sublattices related by parent-lattice-preserving reflection as equivalent, we get A145393 instead of this sequence. If we count sublattices related by rotation of the sublattice only (but not parent lattice; equivalently, sublattices related by rotation by angle which is not a multiple of Pi/2; see illustration in links) as equivalent, we get A054345. If we count sublattices related by any rotation or reflection as equivalent, we get A054346.
Rutherford says at p. 161 that a(n) != A054345(n) only when A002654(n) > 1, but actually these two sequences differ at other terms, too, for example, at n = 15 (see illustration). (End)

Crossrefs

Programs

Formula

a(n) = (A000203(n) + A002654(n))/2. [Rutherford] - N. J. A. Sloane, Mar 13 2009
a(n) = Sum_{ m: m^2|n } A000089(n/m^2) + A157224(n/m^2) = A002654(n) + Sum_{ m: m^2|n } A157224(n/m^2). - Andrey Zabolotskiy, May 07 2018
a(n) = Sum_{ d|n } A004525(d). - Andrey Zabolotskiy, Aug 29 2019

Extensions

New name from Andrey Zabolotskiy, Mar 12 2018

A145394 Number of inequivalent sublattices of index n in hexagonal lattice, where two sublattices are considered equivalent if one can be rotated by a multiple of Pi/3 to give the other.

Original entry on oeis.org

1, 1, 2, 3, 2, 4, 4, 5, 5, 6, 4, 10, 6, 8, 8, 11, 6, 13, 8, 14, 12, 12, 8, 20, 11, 14, 14, 20, 10, 24, 12, 21, 16, 18, 16, 31, 14, 20, 20, 30, 14, 32, 16, 28, 26, 24, 16, 42, 21, 31, 24, 34, 18, 40, 24, 40, 28, 30, 20, 56, 22, 32, 36, 43, 28, 48, 24, 42, 32, 48, 24, 65, 26, 38, 42, 48, 32, 56, 28, 62
Offset: 1

Views

Author

N. J. A. Sloane, Feb 23 2009

Keywords

Comments

Also, apparently a(n) is the number of nonequivalent (up to lattice-preserving affine transformation) triangles on 2D square lattice of area n/2 [Karpenkov]. - Andrey Zabolotskiy, Jul 06 2017
From Andrey Zabolotskiy, Jan 18 2018: (Start)
The parent lattice of the sublattices under consideration has Patterson symmetry group p6, and two sublattices are considered equivalent if they are related via a symmetry from that group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145391 (c2mm), A145392 (p4), A145393 (p4mm), A003051 (p6mm).
If we count sublattices related by parent-lattice-preserving reflection as equivalent, we get A003051 instead of this sequence. If we count sublattices related by rotation of the sublattice only (but not parent lattice; equivalently, sublattices related by rotation by angle which is not a multiple of Pi/3; see illustration in links) as equivalent, we get A054384. If we count sublattices related by any rotation or reflection as equivalent, we get A300651.
Rutherford says at p. 161 that a(n) != A054384(n) only when A002324(n) > 1, but actually these two sequences differ at other terms, too, for example, at n = 14 (see illustration). (End)

Crossrefs

Programs

  • Mathematica
    a[n_] := (DivisorSigma[1, n] + 2 DivisorSum[n, Switch[Mod[#, 3], 1, 1, 2, -1, 0, 0] &])/3; Array[a, 80] (* Jean-François Alcover, Dec 03 2015 *)
  • PARI
    A002324(n) = if( n<1, 0, sumdiv(n, d, (d%3==1) - (d%3==2)));
    A000203(n) = if( n<1, 0, sigma(n));
    a(n) = (A000203(n) + 2 * A002324(n)) / 3;
    \\ Joerg Arndt, Oct 13 2013

Formula

a(n) = (A000203(n) + 2 * A002324(n))/3. [Rutherford] - N. J. A. Sloane, Mar 13 2009
a(n) = Sum_{ m: m^2|n } A000086(n/m^2) + A157227(n/m^2) = A002324(n) + Sum_{ m: m^2|n } A157227(n/m^2). [Rutherford] - Andrey Zabolotskiy, Apr 23 2018
a(n) = Sum_{ d|n } A008611(d-1). - Andrey Zabolotskiy, Aug 29 2019

Extensions

New name from Andrey Zabolotskiy, Dec 14 2017

A322143 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n, d==1 (mod 4)} d^k - Sum_{d|n, d==3 (mod 4)} d^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, -2, 1, 1, 1, -8, 1, 2, 1, 1, -26, 1, 6, 0, 1, 1, -80, 1, 26, -2, 0, 1, 1, -242, 1, 126, -8, -6, 1, 1, 1, -728, 1, 626, -26, -48, 1, 1, 1, 1, -2186, 1, 3126, -80, -342, 1, 7, 2, 1, 1, -6560, 1, 15626, -242, -2400, 1, 73, 6, 0, 1, 1, -19682, 1, 78126, -728, -16806, 1, 703, 26, -10, 0
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 28 2018

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,    1,     1,  ...
  1,  1,   1,    1,    1,     1,  ...
  0, -2,  -8,  -26,  -80,  -242,  ...
  1,  1,   1,    1,    1,     1,  ...
  2,  6,  26,  126,  626,  3126,  ...
  0, -2,  -8,  -26,  -80,  -242,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[(-1)^(j - 1) (2 j - 1)^k x^(2 j - 1)/(1 - x^(2 j - 1)), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten

Formula

G.f. of column k: Sum_{j>=1} (-1)^(j-1)*(2*j - 1)^k*x^(2*j-1)/(1 - x^(2*j-1)).

A193583 Number of fixed points under iteration of sum of squares of digits in base b.

Original entry on oeis.org

1, 3, 1, 3, 1, 5, 3, 3, 1, 3, 3, 7, 1, 3, 1, 7, 5, 3, 1, 7, 3, 7, 1, 3, 1, 7, 3, 3, 3, 7, 5, 7, 3, 3, 1, 7, 5, 3, 1, 5, 3, 11, 3, 3, 3, 15, 3, 3, 3, 3, 3, 7, 1, 7, 1, 15, 3, 3, 3, 3, 3, 7, 3, 3, 1, 7, 7, 3, 5, 3, 7, 15, 1, 7, 3, 7, 3, 3, 3, 7, 5, 15, 1, 3, 3
Offset: 2

Views

Author

Martin Renner, Jul 31 2011

Keywords

Comments

If b>=2 and a>=b^2 then S(a,2,b)
From Christian N. K. Anderson, Apr 22 2013: (Start)
It can be shown that no fixed point has more than 2 digits in base b, and that the two-digit number A+Bb must satisfy the condition that (2A-1)^2+(2B-b)^2=1+b^2. The number of ways of writing (1+b^2) as the sum of two squares is d(1+b^2)-1, where d(n) is the number of divisors of n. (Beardon, 1998, Theorem 3.1)
From the above chain of logic follows:
- The value of the fixed points can be determined by investigating only 8*A002654(n^2+1) pairs of possibilities.
- a(n) = A000005(n^2+1)-1
- a(n) = A193432(n)-1
a(n)=1 iff n^2+1 is prime, and the value of that single fixed point is 1.
The only odd value of n for which a(n)=9 is n=239.
Several values of a(n) occur very infrequently. For example, a(1068)=13 is the only occurrence of 13 for n < 10000. (End)

Examples

			In the decimal system all integers go to (1) or (4, 16, 37, 58, 89, 145, 42, 20) under the iteration of sum of squares of digits, hence there is one fixed point and one cycle. Therefore a(10) = 1.
a(5)=3 because 1 is always a fixed point; also in base 5, decimal 13 -> 23 and 2^2+3^2 = 13; decimal 18 -> 33 and 3^2+3^2 = 18. - _Christian N. K. Anderson_, Apr 22 2013
		

Crossrefs

Equals A193432-1.
Cf. A007770.

Programs

  • R
    library(gmp); y=rep(0,10000)
    for(B in 1:10000) y[B]=prod(table(as.numeric(factorize(1+as.bigz(B)^2)))+1)-1; y # Christian N. K. Anderson, Apr 22 2013

A014200 Number of solutions to x^2 + y^2 <= n, excluding (0,0), divided by 4.

Original entry on oeis.org

0, 1, 2, 2, 3, 5, 5, 5, 6, 7, 9, 9, 9, 11, 11, 11, 12, 14, 15, 15, 17, 17, 17, 17, 17, 20, 22, 22, 22, 24, 24, 24, 25, 25, 27, 27, 28, 30, 30, 30, 32, 34, 34, 34, 34, 36, 36, 36, 36, 37, 40, 40, 42, 44, 44, 44, 44, 44, 46
Offset: 0

Keywords

Comments

From Ant King, Mar 15 2013: (Start)
The terms of this sequence give a running total of the excess of the 4k + 1 divisors of the natural numbers (from 1 through to n) over their 4k + 3 divisors.
To see how good the approximation n * Pi/4 is to a(n), note that a(10^6) = 785387 whereas 10^6 * Pi/4 rounds to 785398. (End)

Crossrefs

Partial sums of A002654.

Programs

  • Mathematica
    1/4*Prepend[SquaresR[2,#]&/@Range[58],0]//Accumulate (* Ant King, Mar 15 2013 *)
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, kronecker(-4, k/d))); \\ Seiichi Manyama, Dec 18 2021

Formula

a(n) = A014198(n) / 4.
Limit_{n->infinity} a(n)/n = Pi/4 = A003881.
a(n) = n - floor(n/3) + floor(n/5) - floor(n/7) + floor(n/9) - floor(n/11) + ... - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 28 2003
G.f.: (1/(1 - x))*Sum_{k>=1} x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Dec 23 2016

A113652 Expansion of (1 - theta_4(q)^2) / 4 in powers of q.

Original entry on oeis.org

1, -1, 0, -1, 2, 0, 0, -1, 1, -2, 0, 0, 2, 0, 0, -1, 2, -1, 0, -2, 0, 0, 0, 0, 3, -2, 0, 0, 2, 0, 0, -1, 0, -2, 0, -1, 2, 0, 0, -2, 2, 0, 0, 0, 2, 0, 0, 0, 1, -3, 0, -2, 2, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, -1, 4, 0, 0, -2, 0, 0, 0, -1, 2, -2, 0, 0, 0, 0, 0, -2, 1, -2, 0, 0, 4, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 2, -1, 0, -3, 2, 0, 0, -2, 0
Offset: 1

Author

Michael Somos, Nov 03 2005

Keywords

Examples

			G.f. = x - x^2 - x^4 + 2*x^5 - x^8 + x^9 - 2*x^10 + 2*x^13 - x^16 + 2*x^17 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 114 Entry 8(v).
  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 576.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987.
  • P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 28, Article 269.

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, -(-1)^n DivisorSum[ n, KroneckerSymbol[ -4, #] &]]; (* Michael Somos, Jun 06 2015 *)
    a[ n_] := SeriesCoefficient[ (1 - EllipticTheta[4, 0, q]^2) / 4, {q, 0, n}]; (* Michael Somos, Jun 06 2015 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ @ -q}, SeriesCoefficient[(1 - EllipticK[m] / (Pi/2)) / 4, {q, 0, n}]]; (* Michael Somos, Jun 06 2015 *)
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * sumdiv(n, d, kronecker( -4, d)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, -1, p%4==1, e+1, !(e%2))))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler(p=2, n, if( p==2, 1 - X/(1 - X), 1 / ((1 - X) * (1 - kronecker( -4, p)*X))) )[n])};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^4 / eta(x^2 + A)^2) / 4, n))};

Formula

a(n) is multiplicative with a(2^e) = -1 if e>0, a(p^e) = e+1 if p == 1 (mod 4), (1 + (-1)^e)/2 if p == 3 (mod 4).
Expansion of (1 - eta(q)^4 / eta(q^2)^2) / 4 in powers of q.
Moebius transform is period 8 sequence [ 1, -2, -1, 0, 1, 2, -1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u2 - 2*u3 + u6 - u1^2 + 3*u3^2 + 2*u1*u3 - 4*u2*u6.
G.f.: Sum_{k>0} -(-1)^k * x^((k^2 + k)/2) / (1 + x^k).
G.f.: Sum_{k>0} -(-1)^k * x^k / (1 + x^(2*k)).
G.f.: Sum_{k>0} -(-1)^k * x^(2*k - 1) / (1 + x^(2*k - 1)).
a(n) = -(-1)^n * A002654(n). a(n) = - A104794(n) / 4 unless n = 0.
a(2*n) = - A002654(n). a(3*n + 1) = A258277(n). a(3*n + 2) = - A258278(n). a(4*n + 1) = A008441(n). a(4*n + 3) = 0. a(6*n + 2) = - A122856(n). a(6*n + 4 ) = - A122856(n). - Michael Somos, Jun 06 2015
a(8*n + 1) = A113407(n). a(8*n + 5) = 2 * A053692(n). a(9*n + 3) = a(9*n + 6) = 0. - Michael Somos, Jun 06 2015

A229062 1 if n is representable as sum of two nonnegative squares, otherwise 0.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1
Offset: 0

Author

Ralf Stephan, Sep 17 2013

Keywords

Comments

Characteristic function of A001481.
a(n) = 1 if A000161(n) > 0.
a(A022544(n)) = 0.
Multiplicative because A002654 is. - Andrew Howroyd, Aug 01 2018
For positive n, m = 2*a(n) + 1 is the smallest positive integer such that m * n is not a sum of two squares. - Peter Schorn, Dec 29 2023

Crossrefs

Cf. A002654, A004018, A070176. Partial sums are in A102548.

Programs

  • Mathematica
    Join[{1},Table[If[SquaresR[2,n]>1,1,0],{n,120}]] (* Harvey P. Dale, Aug 25 2017 *)
  • PARI
    a(n)=my(f=0); my(r=sqrtint(n)); forstep(i=r, 1, -1, if(issquare(n-i*i), f=1; break)); f
    
  • PARI
    a(n)=if(0==n,1,(sumdiv(n, d,(d%4==1) - (d%4==3)) > 0)); \\ Andrew Howroyd, Aug 01 2018, the check for 0-argument added by Antti Karttunen, Apr 22 2022
    
  • Python
    from sympy import factorint
    def A229062(n): return int(all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n).items())) # Chai Wah Wu, Jun 28 2022

Formula

a(n) = min{1, A004018(n)}. - N. J. A. Sloane, Jan 11 2020
Previous Showing 51-60 of 104 results. Next