A268647
G.f.: C(x,y)^2 - S(x,y)^2 = Sum_{n>=0} x^(2*n)*y/[Sum_{k=0..2*n+1} T(n,k)*y^k], where C(x,y) = Sum_{n>=0} x^(2*n) / Product_{k=1..2*n} (k + y) and S(x,y) = Sum_{n>=0} x^(2*n+1) / Product_{k=1..2*n+1} (k + y).
Original entry on oeis.org
0, 1, 2, 5, 4, 1, 48, 124, 120, 55, 12, 1, 2160, 6012, 6636, 3829, 1260, 238, 24, 1, 161280, 478656, 582080, 387260, 157080, 40593, 6720, 690, 40, 1, 18144000, 56772000, 74396520, 54801076, 25494150, 7927205, 1690920, 248523, 24750, 1595, 60, 1, 2874009600, 9397658880, 13075800192, 10415648880, 5357255904, 1893627736, 476011536, 86550035, 11423412, 1084083, 72072, 3185, 84, 1, 610248038400, 2071437822720, 3028563232128, 2569081620624, 1429040500160, 556365173000, 157528627256, 33179499353, 5260335080, 629597540, 56560504, 3753022, 178360, 5740, 112, 1
Offset: 0
Define C(x,y) by the series:
C(x,y) = 1 + x^2/((1+y)*(2+y)) + x^4/((1+y)*(2+y)*(3+y)*(4+y)) + x^6/((1+y)*(2+y)*(3+y)*(4+y)*(5+y)*(6+y)) + x^8/((1+y)*(2+y)*(3+y)*(4+y)*(5+y)*(6+y)*(7+y)*(8+y)) +...
and define S(x,y) by the series:
S(x,y) = x/(1+y) + x^3/((1+y)*(2+y)*(3+y)) + x^5/((1+y)*(2+y)*(3+y)*(4+y)*(5+y)) + x^7/((1+y)*(2+y)*(3+y)*(4+y)*(5+y)*(6+y)*(7+y)) + x^9/((1+y)*(2+y)*(3+y)*(4+y)*(5+y)*(6+y)*(7+y)*(8+y)*(9+y)) +...
then the g.f. of this triangle begins:
C(x,y)^2 - S(x,y)^2 = 1 + x^2*y/((1+y) * (1+y)*(2+y)) + x^4*y/((2+y) * (1+y)*(2+y)*(3+y)*(4+y)) + x^6*y/((3+y) * (1+y)*(2+y)*(3+y)*(4+y)*(5+y)*(6+y)) + x^8*y/((4+y) * (1+y)*(2+y)*(3+y)*(4+y)*(5+y)*(6+y)*(7+y)*(8+y)) +...
where the rows of this triangle are formed from the coefficients in the denominators of coefficients of x^(2*n) in C(x,y)^2 - S(x,y)^2, as more clearly seen in the expansion:
C(x,y)^2 - S(x,y)^2 = y/(0 + y) + x^2 * y/(2 + 5*y + 4*y^2 + y^3) +
x^4 * y/(48 + 124*y + 120*y^2 + 55*y^3 + 12*y^4 + y^5) +
x^6 * y/(2160 + 6012*y + 6636*y^2 + 3829*y^3 + 1260*y^4 + 238*y^5 + 24*y^6 + y^7) +
x^8 * y/(161280 + 478656*y + 582080*y^2 + 387260*y^3 + 157080*y^4 + 40593*y^5 + 6720*y^6 + 690*y^7 + 40*y^8 + y^9) +...
This triangle begins:
0, 1;
2, 5, 4, 1;
48, 124, 120, 55, 12, 1;
2160, 6012, 6636, 3829, 1260, 238, 24, 1;
161280, 478656, 582080, 387260, 157080, 40593, 6720, 690, 40, 1;
18144000, 56772000, 74396520, 54801076, 25494150, 7927205, 1690920, 248523, 24750, 1595, 60, 1;
2874009600, 9397658880, 13075800192, 10415648880, 5357255904, 1893627736, 476011536, 86550035, 11423412, 1084083, 72072, 3185, 84, 1;
610248038400, 2071437822720, 3028563232128, 2569081620624, 1429040500160, 556365173000, 157528627256, 33179499353, 5260335080, 629597540, 56560504, 3753022, 178360, 5740, 112, 1; ...
-
/* C(x,y)^2 - S(x,y)^2 = Sum_{n>=0} x^(2*n)*y/[Sum_{k=0..2*n+1} T(n,k)*y^k] */
{T(n,k) = my(C=1,S=x); C = sum(m=0,n+1, x^(2*m)/prod(k=1,2*m, k + y) +x*O(x^(2*n)));
S = sum(m=1,n+1, x^(2*m-1)/prod(k=1,2*m-1, k + y) +x*O(x^(2*n)));
polcoeff( y/polcoeff( C^2 - S^2, 2*n, x), k, y)}
for(n=0,10, for(k=0,2*n+1, print1(T(n,k),", "));print(""))
-
/* (n + y)*Product_{k=1..2*n} (k + y) = Sum_{k=0..2*n+1} T(n,k)*y^k */
{T(n,k) = polcoeff((n + y)*prod(k=1,2*n, k + y), k, y)}
for(n=0,10, for(k=0,2*n+1, print1(T(n,k),", "));print(""))
A304001
Number of permutations of [n] whose up-down signature has a nonnegative total sum.
Original entry on oeis.org
1, 1, 1, 5, 12, 93, 360, 3728, 20160, 259535, 1814400, 27820524, 239500800, 4251096402, 43589145600, 877606592736, 10461394944000, 235288904377275, 3201186852864000, 79476406782222500, 1216451004088320000, 33020655481590446318, 562000363888803840000
Offset: 0
-
b:= proc(u, o, t) option remember; (n->
`if`(t>=n, n!, `if`(t<-n, 0,
add(b(u-j, o+j-1, t-1), j=1..u)+
add(b(u+j-1, o-j, t+1), j=1..o))))(u+o)
end:
a:= n-> `if`(n=0, 1, add(b(j-1, n-j, 0), j=1..n)):
seq(a(n), n=0..25);
# second Maple program:
a:= n-> `if`(irem(n, 2, 'r')=0, ceil(n!/2),
add(combinat[eulerian1](n, j), j=0..r)):
seq(a(n), n=0..25);
-
Eulerian1[n_, k_] := If[k == 0, 1, If[n == 0, 0, Sum[(-1)^j (k - j + 1)^n Binomial[n + 1, j], {j, 0, k + 1}]]];
a[n_] := Module[{r, m}, {r, m} = QuotientRemainder[n, 2]; If[m == 0, Ceiling[n!/2], Sum[Eulerian1[n, j], {j, 0, r}]]];
a /@ Range[0, 25] (* Jean-François Alcover, Mar 26 2021, after 2nd Maple program *)
A066991
Square array read by descending antidiagonals of number of ways of dividing n*k labeled items into k unlabeled orders with n items in each order.
Original entry on oeis.org
1, 1, 2, 1, 12, 6, 1, 120, 360, 24, 1, 1680, 60480, 20160, 120, 1, 30240, 19958400, 79833600, 1814400, 720, 1, 665280, 10897286400, 871782912000, 217945728000, 239500800, 5040, 1, 17297280, 8892185702400, 20274183401472000
Offset: 1
The array begins:
n\k| 1 2 3 4 ...
--------------------------------------------------------
1 | 1, 1, 1, 1, ...
2 | 2, 12, 120, 1680, ...
3 | 6, 360, 60480, 19958400, ...
4 | 24, 20160, 79833600, 871782912000, ...
5 | 120, 1814400, 217945728000, 101370917007360000, ...
...
-
Table[((n-k+1)*k)!/k!, {n, 10}, {k, n, 1, -1}] (* Paolo Xausa, Feb 19 2024 *)
A143844
Triangle T(n,k) = k^2 read by rows.
Original entry on oeis.org
0, 0, 1, 0, 1, 4, 0, 1, 4, 9, 0, 1, 4, 9, 16, 0, 1, 4, 9, 16, 25, 0, 1, 4, 9, 16, 25, 36, 0, 1, 4, 9, 16, 25, 36, 49, 0, 1, 4, 9, 16, 25, 36, 49, 64, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121
Offset: 0
-
Table[Range[0,n]^2,{n,0,15}]//Flatten (* Harvey P. Dale, Sep 08 2017 *)
-
for(n=0,9,for(k=0,n,print1(k^2", "))) \\ Charles R Greathouse IV, Jun 10 2011
A226731
a(n) = (2n - 1)!/(2n).
Original entry on oeis.org
20, 630, 36288, 3326400, 444787200, 81729648000, 19760412672000, 6082255020441600, 2322315553259520000, 1077167364120207360000, 596585001666576384000000, 388888194657798291456000000
Offset: 3
a(3) = (2*3 - 1)!/(2*3) = 5!/6 = 120/6 = 20.
A370379
Number of compositions of n where there are (2*k)!/2 sorts of part k.
Original entry on oeis.org
1, 1, 13, 385, 21061, 1864921, 243833533, 44133789745, 10556951897461, 3223557261840841, 1223184443268467053, 564530822421956927905, 311384269987431969105061, 202282520358685311116600761, 152856358784713560205903602973
Offset: 0
A380113
Triangle read by rows: The inverse matrix of the central factorials A370707, row n normalized by (-1)^(n - k)*A370707(n, n).
Original entry on oeis.org
1, 1, 1, 3, 4, 1, 10, 15, 6, 1, 35, 56, 28, 8, 1, 126, 210, 120, 45, 10, 1, 462, 792, 495, 220, 66, 12, 1, 1716, 3003, 2002, 1001, 364, 91, 14, 1, 6435, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 24310, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1
Offset: 0
Triangle starts:
[0] [ 1]
[1] [ 1, 1]
[2] [ 3, 4, 1]
[3] [ 10, 15, 6, 1]
[4] [ 35, 56, 28, 8, 1]
[5] [ 126, 210, 120, 45, 10, 1]
[6] [ 462, 792, 495, 220, 66, 12, 1]
[7] [ 1716, 3003, 2002, 1001, 364, 91, 14, 1]
[8] [ 6435, 11440, 8008, 4368, 1820, 560, 120, 16, 1]
[9] [24310, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1]
.
Row 3 of the matrix inverse of the central factorials is [-1/36, 1/24, -1/60, 1/360]. Normalized with (-1)^(n-k)*360 gives row 3 of T.
-
T := (n, k) -> if n = k then 1 elif k = 0 then binomial(2*n, n - k)/2 else binomial(2*n, n - k) fi: seq(seq(T(n, k), k = 0..n), n = 0..9);
-
A380113[n_, k_] := Binomial[2*n, n - k]/(Boole[k == 0 && n > 0] + 1);
Table[A380113[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2025 *)
-
def Trow(n):
def cf(n, k): return falling_factorial(n, k)*rising_factorial(n, k)
def w(n): return factorial(n)*rising_factorial(n, n)
m = matrix(QQ, n + 1, lambda x, y: cf(x, y)).inverse()
return [(-1)^(n-k)*w(n)*m[n, k] for k in range(n+1)]
for n in range(10): print(Trow(n))
A382527
a(n) = Sum_{j = 1..n} (-1)^(n+j) * j^(2*n+4) * binomial(2*n, n-j).
Original entry on oeis.org
1, 252, 52920, 12640320, 3632428800, 1264085222400, 529085049292800, 263564384219136000, 154550100069421056000, 105562401683780321280000, 83178863857362412339200000, 74951718050379657373286400000, 76628603945744083606044672000000, 88258468221509704910254374912000000
Offset: 1
-
seq(add((-1)^(n+j) * j^(2*n+4) * binomial(2*n, n-j), j = 1..n), n = 1..20);
-
A382527[n_] := n*(5*n - 1)*(2*n + 4)!/2880; Array[A382527, 15] (* Paolo Xausa, Apr 03 2025 *)
A383929
a(n) = Sum_{k=0..n} (-1)^k * binomial(2*n, k) * (n-k)^(3*n).
Original entry on oeis.org
1, 1, 60, 16626, 12640320, 20421928750, 60233972198400, 293230314199497444, 2192804991244707840000, 23869875368184417393486678, 362747302615636095725568000000, 7442995512384107947406685870219196, 200637069747857913587015560318156800000, 6945549555749361962465324588957867814958924
Offset: 0
-
Join[{1}, Table[Sum[(-1)^(n-k)*Binomial[2*n, n-k]*k^(3*n), {k, 0, n}], {n, 1, 15}]]
A383930
a(n) = Sum_{k=0..n} (-1)^k * binomial(2*n, k) * (n-k)^(5*n).
Original entry on oeis.org
1, 1, 1020, 14152314, 1071646712640, 286802348769420190, 209974096349134108992000, 355016116241074708829385321492, 1228958111984894631846657261766656000, 7960240318398277162915923478914410838135990, 89961580311571094335785117669395413813764096000000
Offset: 0
-
Join[{1}, Table[Sum[(-1)^(n-k)*Binomial[2*n, n-k]*k^(5*n), {k, 0, n}], {n, 1, 12}]]
Comments