cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A268647 G.f.: C(x,y)^2 - S(x,y)^2 = Sum_{n>=0} x^(2*n)*y/[Sum_{k=0..2*n+1} T(n,k)*y^k], where C(x,y) = Sum_{n>=0} x^(2*n) / Product_{k=1..2*n} (k + y) and S(x,y) = Sum_{n>=0} x^(2*n+1) / Product_{k=1..2*n+1} (k + y).

Original entry on oeis.org

0, 1, 2, 5, 4, 1, 48, 124, 120, 55, 12, 1, 2160, 6012, 6636, 3829, 1260, 238, 24, 1, 161280, 478656, 582080, 387260, 157080, 40593, 6720, 690, 40, 1, 18144000, 56772000, 74396520, 54801076, 25494150, 7927205, 1690920, 248523, 24750, 1595, 60, 1, 2874009600, 9397658880, 13075800192, 10415648880, 5357255904, 1893627736, 476011536, 86550035, 11423412, 1084083, 72072, 3185, 84, 1, 610248038400, 2071437822720, 3028563232128, 2569081620624, 1429040500160, 556365173000, 157528627256, 33179499353, 5260335080, 629597540, 56560504, 3753022, 178360, 5740, 112, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 01 2016

Keywords

Comments

This triangle illustrates the following identity.
Given
C(x,y) = Sum_{n>=0} x^(2*n) / Product_{k=1..2*n} (k + y)
S(x,y) = Sum_{n>=0} x^(2*n+1) / Product_{k=1..2*n+1} (k + y)
then
C(x,y)^2 - S(x,y)^2 = Sum_{n>=0} x^(2*n) * y / ((n + y) * Product_{k=1..2*n} (k + y)).

Examples

			Define C(x,y) by the series:
C(x,y) = 1 + x^2/((1+y)*(2+y)) + x^4/((1+y)*(2+y)*(3+y)*(4+y)) + x^6/((1+y)*(2+y)*(3+y)*(4+y)*(5+y)*(6+y)) + x^8/((1+y)*(2+y)*(3+y)*(4+y)*(5+y)*(6+y)*(7+y)*(8+y)) +...
and define S(x,y) by the series:
S(x,y) = x/(1+y) + x^3/((1+y)*(2+y)*(3+y)) + x^5/((1+y)*(2+y)*(3+y)*(4+y)*(5+y)) + x^7/((1+y)*(2+y)*(3+y)*(4+y)*(5+y)*(6+y)*(7+y)) + x^9/((1+y)*(2+y)*(3+y)*(4+y)*(5+y)*(6+y)*(7+y)*(8+y)*(9+y)) +...
then the g.f. of this triangle begins:
C(x,y)^2 - S(x,y)^2 = 1 + x^2*y/((1+y) * (1+y)*(2+y)) + x^4*y/((2+y) * (1+y)*(2+y)*(3+y)*(4+y)) + x^6*y/((3+y) * (1+y)*(2+y)*(3+y)*(4+y)*(5+y)*(6+y)) + x^8*y/((4+y) * (1+y)*(2+y)*(3+y)*(4+y)*(5+y)*(6+y)*(7+y)*(8+y)) +...
where the rows of this triangle are formed from the coefficients in the denominators of coefficients of x^(2*n) in C(x,y)^2 - S(x,y)^2, as more clearly seen in the expansion:
C(x,y)^2 - S(x,y)^2 = y/(0 + y) + x^2 * y/(2 + 5*y + 4*y^2 + y^3) +
x^4 * y/(48 + 124*y + 120*y^2 + 55*y^3 + 12*y^4 + y^5) +
x^6 * y/(2160 + 6012*y + 6636*y^2 + 3829*y^3 + 1260*y^4 + 238*y^5 + 24*y^6 + y^7) +
x^8 * y/(161280 + 478656*y + 582080*y^2 + 387260*y^3 + 157080*y^4 + 40593*y^5 + 6720*y^6 + 690*y^7 + 40*y^8 + y^9) +...
This triangle begins:
0, 1;
2, 5, 4, 1;
48, 124, 120, 55, 12, 1;
2160, 6012, 6636, 3829, 1260, 238, 24, 1;
161280, 478656, 582080, 387260, 157080, 40593, 6720, 690, 40, 1;
18144000, 56772000, 74396520, 54801076, 25494150, 7927205, 1690920, 248523, 24750, 1595, 60, 1;
2874009600, 9397658880, 13075800192, 10415648880, 5357255904, 1893627736, 476011536, 86550035, 11423412, 1084083, 72072, 3185, 84, 1;
610248038400, 2071437822720, 3028563232128, 2569081620624, 1429040500160, 556365173000, 157528627256, 33179499353, 5260335080, 629597540, 56560504, 3753022, 178360, 5740, 112, 1; ...
		

Crossrefs

Cf. A322627 (diagonal).

Programs

  • PARI
    /* C(x,y)^2 - S(x,y)^2 = Sum_{n>=0} x^(2*n)*y/[Sum_{k=0..2*n+1} T(n,k)*y^k] */
    {T(n,k) = my(C=1,S=x); C = sum(m=0,n+1, x^(2*m)/prod(k=1,2*m, k + y) +x*O(x^(2*n)));
    S = sum(m=1,n+1, x^(2*m-1)/prod(k=1,2*m-1, k + y) +x*O(x^(2*n)));
    polcoeff( y/polcoeff( C^2 - S^2, 2*n, x), k, y)}
    for(n=0,10, for(k=0,2*n+1, print1(T(n,k),", "));print(""))
    
  • PARI
    /* (n + y)*Product_{k=1..2*n} (k + y) = Sum_{k=0..2*n+1} T(n,k)*y^k */
    {T(n,k) = polcoeff((n + y)*prod(k=1,2*n, k + y), k, y)}
    for(n=0,10, for(k=0,2*n+1, print1(T(n,k),", "));print(""))

Formula

G.f. of row n: (n + y) * Product_{k=1..2*n} (k + y) = Sum_{k=0..2*n+1} T(n,k)*y^k, for n>=0.
Row sums equal A002674 (with offset): A002674(n+1) = (n+1)*(2*n+1)!.

A304001 Number of permutations of [n] whose up-down signature has a nonnegative total sum.

Original entry on oeis.org

1, 1, 1, 5, 12, 93, 360, 3728, 20160, 259535, 1814400, 27820524, 239500800, 4251096402, 43589145600, 877606592736, 10461394944000, 235288904377275, 3201186852864000, 79476406782222500, 1216451004088320000, 33020655481590446318, 562000363888803840000
Offset: 0

Views

Author

Alois P. Heinz, May 04 2018

Keywords

Comments

The up-down signature has (+1) for each ascent and (-1) for each descent.

Crossrefs

Bisections give: A002674 (even part), A179457(2n+1,n+1) (odd part).
Cf. A000246 (for nonnegative partial sums), A006551 (total sums are 0 or 1), A008292, A303287.

Programs

  • Maple
    b:= proc(u, o, t) option remember; (n->
         `if`(t>=n, n!, `if`(t<-n, 0,
          add(b(u-j, o+j-1, t-1), j=1..u)+
          add(b(u+j-1, o-j, t+1), j=1..o))))(u+o)
        end:
    a:= n-> `if`(n=0, 1, add(b(j-1, n-j, 0), j=1..n)):
    seq(a(n), n=0..25);
    # second Maple program:
    a:= n-> `if`(irem(n, 2, 'r')=0, ceil(n!/2),
             add(combinat[eulerian1](n, j), j=0..r)):
    seq(a(n), n=0..25);
  • Mathematica
    Eulerian1[n_, k_] := If[k == 0, 1, If[n == 0, 0, Sum[(-1)^j (k - j + 1)^n Binomial[n + 1, j], {j, 0, k + 1}]]];
    a[n_] := Module[{r, m}, {r, m} = QuotientRemainder[n, 2]; If[m == 0, Ceiling[n!/2], Sum[Eulerian1[n, j], {j, 0, r}]]];
    a /@ Range[0, 25] (* Jean-François Alcover, Mar 26 2021, after 2nd Maple program *)

A066991 Square array read by descending antidiagonals of number of ways of dividing n*k labeled items into k unlabeled orders with n items in each order.

Original entry on oeis.org

1, 1, 2, 1, 12, 6, 1, 120, 360, 24, 1, 1680, 60480, 20160, 120, 1, 30240, 19958400, 79833600, 1814400, 720, 1, 665280, 10897286400, 871782912000, 217945728000, 239500800, 5040, 1, 17297280, 8892185702400, 20274183401472000
Offset: 1

Views

Author

Henry Bottomley, Feb 01 2002

Keywords

Comments

T(p,k) = (pk)!/k! is divisible by p^k but not p^(k+1) for p prime; e.g., T(3,4) = 3^4*11*10*8*7*5*4*2*1 = 19958400.

Examples

			The array begins:
  n\k|   1        2             3                   4  ...
  --------------------------------------------------------
   1 |   1,       1,            1,                  1, ...
   2 |   2,      12,          120,               1680, ...
   3 |   6,     360,        60480,           19958400, ...
   4 |  24,   20160,     79833600,       871782912000, ...
   5 | 120, 1814400, 217945728000, 101370917007360000, ...
  ...
		

Crossrefs

Rows include A000012, A001813, A064350.
Columns include A000142, A002674, A065961.

Programs

  • Mathematica
    Table[((n-k+1)*k)!/k!, {n, 10}, {k, n, 1, -1}] (* Paolo Xausa, Feb 19 2024 *)

Formula

T(n,k) = (n*k)!/k!.

Extensions

Edited by Paolo Xausa, Feb 19 2024

A143844 Triangle T(n,k) = k^2 read by rows.

Original entry on oeis.org

0, 0, 1, 0, 1, 4, 0, 1, 4, 9, 0, 1, 4, 9, 16, 0, 1, 4, 9, 16, 25, 0, 1, 4, 9, 16, 25, 36, 0, 1, 4, 9, 16, 25, 36, 49, 0, 1, 4, 9, 16, 25, 36, 49, 64, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121
Offset: 0

Views

Author

Paul Curtz, Sep 03 2008

Keywords

Comments

This is triangle A133819 with an additional leading column of zeros.
There is a family of even integer-valued polynomials p_n(x) = product_{k=0..n} (x^2 - T(n,k))/ A002674(n+1). We find p_0(x) in A000290, p_1(x) in A002415, p_2(x) essentially in A040977, p_3(x) in A053347 and p_4(x) in A054334. - Paul Curtz, Jun 10 2011

Crossrefs

Programs

Formula

T(n,k) = (A002262(n,k))^2.
G.f.: x*y*(1 + x*y)/((1 - x)*(1 - x*y)^3). - Stefano Spezia, Feb 21 2024

Extensions

Definition simplified by R. J. Mathar, Sep 07 2009

A226731 a(n) = (2n - 1)!/(2n).

Original entry on oeis.org

20, 630, 36288, 3326400, 444787200, 81729648000, 19760412672000, 6082255020441600, 2322315553259520000, 1077167364120207360000, 596585001666576384000000, 388888194657798291456000000
Offset: 3

Views

Author

Wesley Ivan Hurt, Jun 15 2013

Keywords

Comments

For n < 3, the formula does not produce an integer.
The ratio of the product of the partition parts of 2n into exactly two parts to the sum of the partition parts of 2n into exactly two parts. For example, a(3) = 20, and 2*3 = 6 has 3 partitions into exactly two parts: (5,1), (4,2), (3,3). Forming the ratio of product to sum (of parts), we have (5*1*4*2*3*3)/(5+1+4+2+3+3) = 360/18 = 20. - Wesley Ivan Hurt, Jun 24 2013

Examples

			a(3) = (2*3 - 1)!/(2*3) = 5!/6 = 120/6 = 20.
		

Crossrefs

Programs

Formula

a(n) = A009445(n-1)/A005843(n) = A002674(n)/A001105(n). - Wesley Ivan Hurt, Jun 24 2013
a(n) ~ sqrt(Pi)*2^(2*n-1)*n^(2*n-3/2)/exp(2*n). - Ilya Gutkovskiy, Nov 01 2016
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=3} 1/a(n) = e - 8/3.
Sum_{n>=3} (-1)^(n+1)/a(n) = cos(1) + sin(1) - 4/3. (End)

A370379 Number of compositions of n where there are (2*k)!/2 sorts of part k.

Original entry on oeis.org

1, 1, 13, 385, 21061, 1864921, 243833533, 44133789745, 10556951897461, 3223557261840841, 1223184443268467053, 564530822421956927905, 311384269987431969105061, 202282520358685311116600761, 152856358784713560205903602973
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/(1-sum(k=1, N, (2*k)!/2*x^k)))

Formula

G.f.: 1 / (1 - Sum_{k>=1} (2*k)!/2 * x^k).
a(0) = 1; a(n) = Sum_{k=1..n} (2*k)!/2 * a(n-k).

A380113 Triangle read by rows: The inverse matrix of the central factorials A370707, row n normalized by (-1)^(n - k)*A370707(n, n).

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 10, 15, 6, 1, 35, 56, 28, 8, 1, 126, 210, 120, 45, 10, 1, 462, 792, 495, 220, 66, 12, 1, 1716, 3003, 2002, 1001, 364, 91, 14, 1, 6435, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 24310, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1
Offset: 0

Views

Author

Peter Luschny, Jan 12 2025

Keywords

Comments

The inverse matrix of A370707 is a rational matrix and the normalization serves to make it a matrix over the integers. Note that the normalization factor A370707(n, n) = FallingFactorial(n, n) * RisingFactorial(n, n) extends A002674 to n = 0.

Examples

			Triangle starts:
  [0] [    1]
  [1] [    1,     1]
  [2] [    3,     4,     1]
  [3] [   10,    15,     6,     1]
  [4] [   35,    56,    28,     8,    1]
  [5] [  126,   210,   120,    45,   10,    1]
  [6] [  462,   792,   495,   220,   66,   12,   1]
  [7] [ 1716,  3003,  2002,  1001,  364,   91,  14,   1]
  [8] [ 6435, 11440,  8008,  4368, 1820,  560, 120,  16,  1]
  [9] [24310, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1]
.
Row 3 of the matrix inverse of the central factorials is [-1/36, 1/24, -1/60, 1/360]. Normalized with (-1)^(n-k)*360 gives row 3 of T.
		

Crossrefs

Variant: A094527.
Cf. A370707, A002674, A008311, A088218 and A110556 (column 0), A081294 (row sums), A000007 (alternating row sums), A005810 (central terms).

Programs

  • Maple
    T := (n, k) -> if n = k then 1 elif k = 0 then binomial(2*n, n - k)/2 else binomial(2*n, n - k) fi: seq(seq(T(n, k), k = 0..n), n = 0..9);
  • Mathematica
    A380113[n_, k_] := Binomial[2*n, n - k]/(Boole[k == 0 && n > 0] + 1);
    Table[A380113[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2025 *)
  • SageMath
    def Trow(n):
        def cf(n, k): return falling_factorial(n, k)*rising_factorial(n, k)
        def w(n): return factorial(n)*rising_factorial(n, n)
        m = matrix(QQ, n + 1, lambda x, y: cf(x, y)).inverse()
        return [(-1)^(n-k)*w(n)*m[n, k] for k in range(n+1)]
    for n in range(10): print(Trow(n))

Formula

T(n, k) = (-1)^(n - k) * ff(n, n) * rf(n, n) * M^(-1)(ff(n, k) * rf(n, k)) where ff denotes the falling factorial, rf the rising factorial and M^(-1)(t(n, k)) the matrix inverse to the matrix with entries t(n, k).
T(n, k) = binomial(2*n, n - k) for 0 < k < n. T(n, n) = 1; T(n, 0) = (-1)^n*binomial(-n, n).
Sum_{k=0..n} T(n, k)*cos(k*x) = 2^(n-1)*(cos(x)+1)^n. (After Philippe Deléham in A008311).

A382527 a(n) = Sum_{j = 1..n} (-1)^(n+j) * j^(2*n+4) * binomial(2*n, n-j).

Original entry on oeis.org

1, 252, 52920, 12640320, 3632428800, 1264085222400, 529085049292800, 263564384219136000, 154550100069421056000, 105562401683780321280000, 83178863857362412339200000, 74951718050379657373286400000, 76628603945744083606044672000000, 88258468221509704910254374912000000
Offset: 1

Views

Author

Peter Bala, Mar 30 2025

Keywords

Comments

Compare with the identities Sum_{j = 1..n} (-1)^(n+j) * j^n * binomial(n, n-j) = n! and Sum_{j = 1..n} (-1)^(n+j) * j^(2*n+2) * binomial(2*n, n-j) = n*(n+1)*(2*n+1)/6 * (2*n)!/2 = A000330(n) * (2*n)!/2. (Campbell, Eq. 17).

Crossrefs

Programs

  • Maple
    seq(add((-1)^(n+j) * j^(2*n+4) * binomial(2*n, n-j), j = 1..n), n = 1..20);
  • Mathematica
    A382527[n_] := n*(5*n - 1)*(2*n + 4)!/2880; Array[A382527, 15] (* Paolo Xausa, Apr 03 2025 *)

Formula

a(n) = n*(n+1)*(n+2)*(2*n+3)*(5*n-1)*(2*n+1)!/6!.
a(n) = (2*n)!/2 * (Sum_{1 <= i <= j <= n} i^2*j^2) = (2*n)!/2 * A060493(n).
a(n) = 2*n*(n+2)*(2*n+3)*(5*n-1)/((n-1)*(5*n-6)) * a(n-1) with a(1) = 1.

A383929 a(n) = Sum_{k=0..n} (-1)^k * binomial(2*n, k) * (n-k)^(3*n).

Original entry on oeis.org

1, 1, 60, 16626, 12640320, 20421928750, 60233972198400, 293230314199497444, 2192804991244707840000, 23869875368184417393486678, 362747302615636095725568000000, 7442995512384107947406685870219196, 200637069747857913587015560318156800000, 6945549555749361962465324588957867814958924
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[(-1)^(n-k)*Binomial[2*n, n-k]*k^(3*n), {k, 0, n}], {n, 1, 15}]]

Formula

a(n) ~ 2^(2*n + 1/2) * r^(3*n + 1) * n^(3*n) / (sqrt(3 - r^2) * exp(3*n) * (r^2 - 1)^n), where r = 1.1647414545521878292908344008181647954486720209245020743652... is the root of the equation (1 + r)/(1 - r) = -exp(3/r).

A383930 a(n) = Sum_{k=0..n} (-1)^k * binomial(2*n, k) * (n-k)^(5*n).

Original entry on oeis.org

1, 1, 1020, 14152314, 1071646712640, 286802348769420190, 209974096349134108992000, 355016116241074708829385321492, 1228958111984894631846657261766656000, 7960240318398277162915923478914410838135990, 89961580311571094335785117669395413813764096000000
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2025

Keywords

Comments

In general, for m>2, Sum_{k=0..n} (-1)^(n-k) * binomial(2*n, n-k) * k^(m*n) ~ 2^(2*n + 1/2) * r^(m*n + 1) * n^(m*n) / (sqrt(m + (2-m)*r^2) * exp(m*n) * (r^2 - 1)^n), where r is the root of the equation (1 + r)/(1 - r) = -exp(m/r).

Crossrefs

Cf. A002674 (m=2), A383929 (m=3), A298851*A002674 (m=4).
Cf. A383917.

Programs

  • Mathematica
    Join[{1}, Table[Sum[(-1)^(n-k)*Binomial[2*n, n-k]*k^(5*n), {k, 0, n}], {n, 1, 12}]]

Formula

a(n) ~ 2^(2*n + 1/2) * r^(5*n + 1) * n^(5*n) / (sqrt(5 - 3*r^2) * exp(5*n) * (r^2 - 1)^n), where r = 1.0145858159274292356581282820876562174881159476120290450838... is the root of the equation (1 + r)/(1 - r) = -exp(5/r).
Previous Showing 21-30 of 33 results. Next