cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A060486 Tricoverings of an n-set.

Original entry on oeis.org

1, 0, 0, 5, 205, 11301, 904580, 101173251, 15207243828, 2975725761202, 738628553556470, 227636079973503479, 85554823285296622543, 38621481302086460057613, 20669385794052533823555309, 12966707189875262685801947906, 9441485712482676603570079314728
Offset: 0

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Examples

			There are 1 4-block tricovering, 3 5-block tricoverings and 1 6-block tricovering of a 3-set (cf. A060487), so a(3)=5.
		

Crossrefs

Formula

E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..inf}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 15 2018

A060483 Number of 5-block tricoverings of an n-set.

Original entry on oeis.org

3, 57, 717, 7845, 81333, 825237, 8300757, 83202645, 832809813, 8331237717, 83324947797, 833299785045, 8333199127893, 83332796486997, 833331185898837, 8333324743497045, 83333298973791573, 833333195894773077, 8333332783578305877, 83333331134311650645
Offset: 3

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Crossrefs

Programs

Formula

a(n) = (1/5!)*(10^n - 15*4^n + 45*2^n - 40).
Generally, e.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..inf}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).
G.f.: 3*x^3*(2*x+1) / ((x-1)*(2*x-1)*(4*x-1)*(10*x-1)). - Colin Barker, Jan 11 2013

Extensions

More terms from Colin Barker, Jan 11 2013

A060491 Number of ordered tricoverings of an unlabeled n-set.

Original entry on oeis.org

1, 0, 0, 184, 17488, 2780752, 689187720, 236477490418, 107317805999204, 62318195302890305, 45081693413563797127, 39762626850034005271588, 42009504510315968282400843, 52381340312720286113688037624, 76118747309505733406576769607755
Offset: 0

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Examples

			There are 184 ordered tricoverings of an unlabeled 3-set: 4 4-block, 60 5-block and 120 6-block tricoverings (cf. A060492).
		

Crossrefs

Programs

  • PARI
    seq(n)={my(m=2*n\2, y='y + O('y^(n+1))); Vec(subst(Pol(serlaplace(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 3)*exp((-x^2/2)/(1-y)^k + O(x*x^m))*x^k/k!))), x, 1))} \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f. for ordered k-block tricoverings of an unlabeled n-set is exp(-x+x^2/2+x^3/3*y/(1-y))*Sum_{k=0..inf}1/(1-y)^binomial(k, 3)*exp(-x^2/2*1/(1-y)^n)*x^k/k!.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 30 2020

A060484 Number of 6-block tricoverings of an n-set.

Original entry on oeis.org

1, 95, 3107, 75835, 1653771, 34384875, 700030507, 14116715435, 283432939691, 5679127043755, 113683003777707, 2274630646577835, 45502044971338411, 910133025632152235, 18203564201836161707, 364080180268471397035
Offset: 3

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Crossrefs

Programs

  • Mathematica
    With[{c=1/6!},Table[c(20^n-6*10^n-15*8^n+135*4^n-310*2^n+240),{n,3,20}]] (* or *) LinearRecurrence[{45,-720,5220,-17664,25920,-12800},{1,95,3107,75835,1653771,34384875},20] (* Harvey P. Dale, Jan 05 2017 *)
  • PARI
    a(n) = (1/6!)*(20^n - 6*10^n - 15*8^n + 135*4^n - 310*2^n + 240) \\ Andrew Howroyd, Dec 15 2018

Formula

a(n) = (1/6!)*(20^n - 6*10^n - 15*8^n + 135*4^n - 310*2^n + 240).
E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..inf}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).
G.f.: -x^3*(800*x^3+448*x^2-50*x-1) / ((x-1)*(2*x-1)*(4*x-1)*(8*x-1)*(10*x-1)*(20*x-1)). - Colin Barker, Jan 12 2013
a(n) = 45*a(n-1)-720*a(n-2)+5220*a(n-3)-17664*a(n-4)+25920*a(n-5)-12800*a(n-6). - Wesley Ivan Hurt, Oct 18 2021

A060485 Number of 7-block tricoverings of an n-set.

Original entry on oeis.org

43, 4520, 244035, 10418070, 401861943, 14778678180, 530817413155, 18837147108890, 664260814445943, 23345018969140440, 818942064306004275, 28699514624047140510, 1005201938765467579543, 35196266296400319440300
Offset: 4

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Crossrefs

Formula

a(n) = (1/7!)*(35^n - 7*20^n - 21*15^n + 42*10^n + 105*8^n + 105*7^n + 70*5^n - 945*4^n - 525*3^n + 2450*2^n - 1470).
E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..infinity}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).
G.f.: x^4*(27300000*x^7 +9288000*x^6 -17908650*x^5 +6008735*x^4 -796380*x^3 +38552*x^2 +210*x -43) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(7*x -1)*(8*x -1)*(10*x -1)*(15*x -1)*(20*x -1)*(35*x -1)). - Colin Barker, Jan 12 2013

A178165 Number of unordered collections of distinct nonempty subsets of an n-element set where each element appears in at most 2 subsets.

Original entry on oeis.org

1, 2, 8, 59, 652, 9736, 186478, 4421018, 126317785, 4260664251, 166884941780, 7489637988545, 380861594219460, 21739310882945458, 1381634777325000263, 97089956842985393297, 7497783115765911443879, 632884743974716421132084
Offset: 0

Views

Author

Daniel E. Loeb, Dec 16 2010

Keywords

Comments

If each element must appear in exactly 1 subset, then we get the Bell numbers A000110.
If each element must appear in exactly 2 subsets, then we get A002718.

Crossrefs

Programs

  • Mathematica
    terms = m = 30;
    a094577[n_] := Sum[Binomial[n, k]*BellB[2n-k], {k, 0, n}];
    egf = Exp[(1 - Exp[x])/2]*Sum[a094577[n]*(x/2)^n/n!, {n, 0, m}] + O[x]^m;
    A094574 = CoefficientList[egf + O[x]^m, x]*Range[0, m-1]!;
    a[n_] := Sum[Binomial[n, k]*A094574[[k+1]], {k, 0, n}];
    Table[a[n], {n, 0, m-1}] (* Jean-François Alcover, May 24 2019 *)
  • Python
    from numpy import array
    def toBinary(n, k):
        ans=[]
        for i in range(k):
            ans.insert(0, n%2)
            n=n>>1
        return array(ans)
    def powerSet(k): return [toBinary(n,k) for n in range(1,2**k)]
    def courcelle(maxUses, remainingSets, exact=False):
        if exact and not all(maxUses<=sum(remainingSets)): ans=0
        elif len(remainingSets)==0: ans=1
        else:
            set0=remainingSets[0]
            if all(set0<=maxUses): ans=courcelle(maxUses-set0,remainingSets[1:],exact=exact)
            else: ans=0
            ans+=courcelle(maxUses,remainingSets[1:],exact=exact)
        return ans
    for i in range(10):
        print(i, courcelle(array([2]*i),powerSet(i),exact=False))

Formula

Binomial transform of A094574: a(n) = Sum_{k=0..n} C(n,k)*A094574(k).

Extensions

Edited and corrected by Max Alekseyev, Dec 19 2010

A059946 Number of 5-block bicoverings of an n-set.

Original entry on oeis.org

0, 0, 0, 25, 472, 6185, 70700, 759045, 7894992, 80736625, 817897300, 8241325565, 82783813112, 830046591465, 8313655213500, 83215436364085, 832626645756832, 8329096006484705, 83307920631515300, 833180902353754605, 8332418928963358152, 83327847634888960345
Offset: 1

Views

Author

Vladeta Jovovic, Feb 14 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Column k=5 of A059443.
Cf. A002718.

Programs

  • Mathematica
    With[{c=(1/5!)},Table[c(10^n-5 6^n-10 4^n+20 3^n+30 2^n-60),{n,20}]]  (* Harvey P. Dale, Apr 21 2011 *)
  • PARI
    a(n) = {(1/5!)*(10^n - 5*6^n - 10*4^n + 20*3^n + 30*2^n - 60)} \\ Andrew Howroyd, Jan 29 2020

Formula

a(n) = (1/5!)*(10^n - 5*6^n - 10*4^n + 20*3^n + 30*2^n - 60).
E.g.f. for m-block bicoverings of an n-set is exp(-x-1/2*x^2*(exp(y)-1))*Sum_{i>=0} (x^i/i!)*exp(binomial(i, 2)*y).
G.f.: x^4*(288*x^2-178*x+25) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(6*x-1)*(10*x-1)). - Colin Barker, Jan 11 2013

Extensions

More terms from Colin Barker, Jan 11 2013

A059947 Number of 6-block bicoverings of an n-set.

Original entry on oeis.org

0, 0, 0, 3, 256, 7255, 149660, 2681063, 44659776, 714287535, 11154475420, 171673613023, 2618246526896, 39701554817015, 599773397512380, 9038881598035383, 136004367641775616, 2044264589908169695, 30705868769902628540, 461006369270166660143, 6919274132365824549936
Offset: 1

Views

Author

Vladeta Jovovic, Feb 14 2001

Keywords

References

  • I. P. Goulden and D. M.Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Column k=6 of A059443.
Cf. A002718.

Programs

  • Mathematica
    CoefficientList[Series[x^4*(16800*x^4-11362*x^3+2237*x^2-112*x-3) / ((1-x)*(2*x-1)*(3*x-1)*(4*x-1)*(6*x-1)*(7*x-1)*(10*x-1)*(15*x-1)), {x, 0, 21}], x] (* Georg Fischer, May 18 2019 *)
  • PARI
    a(n)=(1/6!)*(15^n-6*10^n-15*7^n+30*6^n+60*4^n-50*3^n-180*2^n+240) \\ Georg Fischer, May 18 2019

Formula

a(n) = (1/6!)*(15^n - 6*10^n - 15*7^n + 30*6^n + 60*4^n - 50*3^n - 180*2^n + 240).
E.g.f.: exp(-x-1/2*x^2*(exp(y)-1)) * Sum_{i>=0} x^i/i!*exp(binomial(i, 2)*y), for m-block bicoverings of an n-set.
G.f.: x^4*(16800*x^4-11362*x^3+2237*x^2-112*x-3) / ((1-x)*(2*x-1)*(3*x-1)*(4*x-1)*(6*x-1)*(7*x-1)*(10*x-1)*(15*x-1)). [Colin Barker, Jan 11 2013; corrected by Georg Fischer, May 18 2019]

Extensions

More terms from Colin Barker, Jan 11 2013

A059948 Number of 7-block bicoverings of an n-set.

Original entry on oeis.org

0, 0, 0, 0, 40, 3306, 131876, 3961356, 103290096, 2488179582, 57162274972, 1274774473632, 27887396866472, 602352276704178, 12899161619186388, 274612697648135028, 5822592730060070368, 123107330974129584294
Offset: 1

Views

Author

Vladeta Jovovic, Feb 14 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Column k=7 of A059443.
Cf. A002718.

Formula

a(n)=(1/7!) * (21^n -7*15^n -21*11^n +42*10^n +105*7^n -140*6^n +105*5^n -420*4^n +35*3^n +1050*2^n -1050).
The number of m-block bicoverings of an n-set is [x^m*y^n] 1/n!*exp(-x-1/2*x^2*(exp(y)-1)) * sum(i>=0, x^i/i! * exp(binomial(i, 2)*y) ) where [x^m*y^n] extracts the coefficient of x^m*y^n, see Goulden/Jackson p.203.
G.f.: 2*x^5*(5197500*x^6-4601880*x^5+1501221*x^4-219455*x^3+12587*x^2+47*x-20) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(10*x-1)*(11*x-1)*(15*x-1)*(21*x-1)). - Colin Barker, Jul 07 2013

A098233 Consider the family of ordinary multigraphs. Sequence gives the triangle read by rows giving coefficients of polynomials arising from enumeration of those multigraphs on n edges.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 7, 3, 1, 1, 13, 46, 47, 25, 6, 1, 1, 40, 295, 587, 516, 235, 65, 10, 1, 1, 121, 1846, 6715, 9690, 7053, 3006, 800, 140, 15, 1, 1, 364, 11347, 73003, 170051, 189458, 119211, 46795, 12201, 2170, 266, 21, 1, 1, 1093, 68986, 768747
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

Comments

Also gives number T(n, k) of partitions of the multiset {1, 1, 2, 2, ..., n, n} into k nonempty subsets, for 2 <= k <= 2n. - Marko Riedel, Jan 22 2023

Examples

			The first few polynomials are:
  1,
  x^2,
  x^2+x^3+x^4,
  x^2+4x^3+7x^4+3x^5+x^6,
  x^2+13x^3+46x^4+47x^5+25x^6+6x^7+x^8,
  x^2+40x^3+295x^4+587x^5+516x^6+235x^7+65x^8+10x^9+x^10,
  ...
Triangle starts:
  1;
  1;
  1,  1,   1;
  1,  4,   7,   3,   1;
  1, 13,  46,  47,  25,   6,  1;
  1, 40, 295, 587, 516, 235, 65, 10, 1;
  ...
		

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Cf. A360037, A360038, A360039, A020554 (row sums).
Previous Showing 11-20 of 23 results. Next