A060486
Tricoverings of an n-set.
Original entry on oeis.org
1, 0, 0, 5, 205, 11301, 904580, 101173251, 15207243828, 2975725761202, 738628553556470, 227636079973503479, 85554823285296622543, 38621481302086460057613, 20669385794052533823555309, 12966707189875262685801947906, 9441485712482676603570079314728
Offset: 0
There are 1 4-block tricovering, 3 5-block tricoverings and 1 6-block tricovering of a 3-set (cf. A060487), so a(3)=5.
Cf.
A006095,
A060483-
A060485, (row sums of)
A060487,
A060090-
A060095,
A060069,
A060070,
A060051-
A060053,
A002718,
A059443,
A003462,
A059945-
A059951.
A060483
Number of 5-block tricoverings of an n-set.
Original entry on oeis.org
3, 57, 717, 7845, 81333, 825237, 8300757, 83202645, 832809813, 8331237717, 83324947797, 833299785045, 8333199127893, 83332796486997, 833331185898837, 8333324743497045, 83333298973791573, 833333195894773077, 8333332783578305877, 83333331134311650645
Offset: 3
Cf.
A006095,
A060484,
A060485,
A060486,
A060090-
A060095,
A060069,
A060070,
A060051-
A060053,
A002718,
A059443,
A003462,
A059945-
A059951.
A060491
Number of ordered tricoverings of an unlabeled n-set.
Original entry on oeis.org
1, 0, 0, 184, 17488, 2780752, 689187720, 236477490418, 107317805999204, 62318195302890305, 45081693413563797127, 39762626850034005271588, 42009504510315968282400843, 52381340312720286113688037624, 76118747309505733406576769607755
Offset: 0
There are 184 ordered tricoverings of an unlabeled 3-set: 4 4-block, 60 5-block and 120 6-block tricoverings (cf. A060492).
Cf.
A060486,
A060487,
A060090,
A060092,
A060069,
A060070,
A060051,
A060052,
A060053,
A002718,
A059443.
-
seq(n)={my(m=2*n\2, y='y + O('y^(n+1))); Vec(subst(Pol(serlaplace(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 3)*exp((-x^2/2)/(1-y)^k + O(x*x^m))*x^k/k!))), x, 1))} \\ Andrew Howroyd, Jan 30 2020
A060484
Number of 6-block tricoverings of an n-set.
Original entry on oeis.org
1, 95, 3107, 75835, 1653771, 34384875, 700030507, 14116715435, 283432939691, 5679127043755, 113683003777707, 2274630646577835, 45502044971338411, 910133025632152235, 18203564201836161707, 364080180268471397035
Offset: 3
Cf.
A006095,
A060483,
A060485,
A060486,
A060090-
A060095,
A060069,
A060070,
A060051-
A060053,
A002718,
A059443,
A003462,
A059945-
A059951.
-
With[{c=1/6!},Table[c(20^n-6*10^n-15*8^n+135*4^n-310*2^n+240),{n,3,20}]] (* or *) LinearRecurrence[{45,-720,5220,-17664,25920,-12800},{1,95,3107,75835,1653771,34384875},20] (* Harvey P. Dale, Jan 05 2017 *)
-
a(n) = (1/6!)*(20^n - 6*10^n - 15*8^n + 135*4^n - 310*2^n + 240) \\ Andrew Howroyd, Dec 15 2018
A060485
Number of 7-block tricoverings of an n-set.
Original entry on oeis.org
43, 4520, 244035, 10418070, 401861943, 14778678180, 530817413155, 18837147108890, 664260814445943, 23345018969140440, 818942064306004275, 28699514624047140510, 1005201938765467579543, 35196266296400319440300
Offset: 4
- Andrew Howroyd, Table of n, a(n) for n = 4..200
- Index entries for linear recurrences with constant coefficients, signature (110, -4991, 124120, -1887459, 18470550, -118758569, 501056740, -1355000500, 2223560000, -1973160000, 705600000).
Cf.
A006095,
A060483,
A060484,
A060486,
A060090-
A060095,
A060069,
A060070,
A060051-
A060053,
A002718,
A059443,
A003462,
A059945-
A059951.
A178165
Number of unordered collections of distinct nonempty subsets of an n-element set where each element appears in at most 2 subsets.
Original entry on oeis.org
1, 2, 8, 59, 652, 9736, 186478, 4421018, 126317785, 4260664251, 166884941780, 7489637988545, 380861594219460, 21739310882945458, 1381634777325000263, 97089956842985393297, 7497783115765911443879, 632884743974716421132084
Offset: 0
-
terms = m = 30;
a094577[n_] := Sum[Binomial[n, k]*BellB[2n-k], {k, 0, n}];
egf = Exp[(1 - Exp[x])/2]*Sum[a094577[n]*(x/2)^n/n!, {n, 0, m}] + O[x]^m;
A094574 = CoefficientList[egf + O[x]^m, x]*Range[0, m-1]!;
a[n_] := Sum[Binomial[n, k]*A094574[[k+1]], {k, 0, n}];
Table[a[n], {n, 0, m-1}] (* Jean-François Alcover, May 24 2019 *)
-
from numpy import array
def toBinary(n, k):
ans=[]
for i in range(k):
ans.insert(0, n%2)
n=n>>1
return array(ans)
def powerSet(k): return [toBinary(n,k) for n in range(1,2**k)]
def courcelle(maxUses, remainingSets, exact=False):
if exact and not all(maxUses<=sum(remainingSets)): ans=0
elif len(remainingSets)==0: ans=1
else:
set0=remainingSets[0]
if all(set0<=maxUses): ans=courcelle(maxUses-set0,remainingSets[1:],exact=exact)
else: ans=0
ans+=courcelle(maxUses,remainingSets[1:],exact=exact)
return ans
for i in range(10):
print(i, courcelle(array([2]*i),powerSet(i),exact=False))
A059946
Number of 5-block bicoverings of an n-set.
Original entry on oeis.org
0, 0, 0, 25, 472, 6185, 70700, 759045, 7894992, 80736625, 817897300, 8241325565, 82783813112, 830046591465, 8313655213500, 83215436364085, 832626645756832, 8329096006484705, 83307920631515300, 833180902353754605, 8332418928963358152, 83327847634888960345
Offset: 1
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
-
With[{c=(1/5!)},Table[c(10^n-5 6^n-10 4^n+20 3^n+30 2^n-60),{n,20}]] (* Harvey P. Dale, Apr 21 2011 *)
-
a(n) = {(1/5!)*(10^n - 5*6^n - 10*4^n + 20*3^n + 30*2^n - 60)} \\ Andrew Howroyd, Jan 29 2020
A059947
Number of 6-block bicoverings of an n-set.
Original entry on oeis.org
0, 0, 0, 3, 256, 7255, 149660, 2681063, 44659776, 714287535, 11154475420, 171673613023, 2618246526896, 39701554817015, 599773397512380, 9038881598035383, 136004367641775616, 2044264589908169695, 30705868769902628540, 461006369270166660143, 6919274132365824549936
Offset: 1
- I. P. Goulden and D. M.Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
- Georg Fischer, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (48,-932,9550,-56319,194762,-382908,387000,-151200).
-
CoefficientList[Series[x^4*(16800*x^4-11362*x^3+2237*x^2-112*x-3) / ((1-x)*(2*x-1)*(3*x-1)*(4*x-1)*(6*x-1)*(7*x-1)*(10*x-1)*(15*x-1)), {x, 0, 21}], x] (* Georg Fischer, May 18 2019 *)
-
a(n)=(1/6!)*(15^n-6*10^n-15*7^n+30*6^n+60*4^n-50*3^n-180*2^n+240) \\ Georg Fischer, May 18 2019
A059948
Number of 7-block bicoverings of an n-set.
Original entry on oeis.org
0, 0, 0, 0, 40, 3306, 131876, 3961356, 103290096, 2488179582, 57162274972, 1274774473632, 27887396866472, 602352276704178, 12899161619186388, 274612697648135028, 5822592730060070368, 123107330974129584294
Offset: 1
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
A098233
Consider the family of ordinary multigraphs. Sequence gives the triangle read by rows giving coefficients of polynomials arising from enumeration of those multigraphs on n edges.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 4, 7, 3, 1, 1, 13, 46, 47, 25, 6, 1, 1, 40, 295, 587, 516, 235, 65, 10, 1, 1, 121, 1846, 6715, 9690, 7053, 3006, 800, 140, 15, 1, 1, 364, 11347, 73003, 170051, 189458, 119211, 46795, 12201, 2170, 266, 21, 1, 1, 1093, 68986, 768747
Offset: 0
The first few polynomials are:
1,
x^2,
x^2+x^3+x^4,
x^2+4x^3+7x^4+3x^5+x^6,
x^2+13x^3+46x^4+47x^5+25x^6+6x^7+x^8,
x^2+40x^3+295x^4+587x^5+516x^6+235x^7+65x^8+10x^9+x^10,
...
Triangle starts:
1;
1;
1, 1, 1;
1, 4, 7, 3, 1;
1, 13, 46, 47, 25, 6, 1;
1, 40, 295, 587, 516, 235, 65, 10, 1;
...
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
- Steve Butler, Fan Chung, Jay Cummings, and R. L. Graham, Juggling card sequences, arXiv:1504.01426 [math.CO], 2015.
- L. Comtet, Birecouvrements et birevêtements d'un ensemble fini, Studia Sci. Math. Hungar 3 (1968): 137-152. [Annotated scanned copy. Warning: the table of v(n,k) has errors.]
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
Comments