cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 158 results. Next

A160617 Numerator of Laguerre(n, -1).

Original entry on oeis.org

1, 2, 7, 17, 209, 773, 13327, 65461, 1441729, 1255151, 234662231, 1702678841, 53334454417, 448162154317, 16083557845279, 13946689584823, 126523856174033, 66120494322107921, 269906478537389909, 34987413853951524577
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2009

Keywords

Crossrefs

For denominators see A160618.
Cf. A002720.

Programs

  • Magma
    [Numerator((&+[Binomial(n,k)*(1/Factorial(k)): k in [0..n]])): n in [0..30]]; // G. C. Greubel, May 06 2018
  • Mathematica
    Numerator[Table[LaguerreL[n, -1], {n, 0, 50}]] (* G. C. Greubel, May 06 2018 *)
  • Maxima
    s(n):=if n=0 then 1/2 else 1/(n+2)*(n +1 +sum(s(n-i-2)*(i+1), i,0,n-2));
    makelist(num(s(n)),n,0,20); /* Vladimir Kruchinin, Sep 30 2016 */
    
  • PARI
    lista(nn) = {x = 'x + O('x^nn); v = exp(x/(1-x))/(1-x); for (n=0, nn-1, print1(numerator(polcoeff(v, n)), ", "););} \\ Michel Marcus, Nov 27 2015
    
  • PARI
    for(n=0,30, print1(numerator(sum(k=0,n, binomial(n,k)*(1/k!))), ", ")) \\ G. C. Greubel, May 06 2018
    

Formula

a(n) = numerator(s(n)), where s(0)=1/2, s(n) = 1/(n+2)*(n +1 + Sum_{i=0..n-2} s(n-i-2)*(i+1)). - Vladimir Kruchinin, Sep 30 2016

A160618 Denominator of Laguerre(n, -1).

Original entry on oeis.org

1, 1, 2, 3, 24, 60, 720, 2520, 40320, 25920, 3628800, 19958400, 479001600, 3113510400, 87178291200, 59439744000, 426995712000, 177843714048000, 582033973248000, 60822550204416000, 143111882833920000
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2009

Keywords

Crossrefs

For numerators see A160617.
Cf. A002720.

Programs

  • Magma
    [Denominator((&+[Binomial(n,k)*(1/Factorial(k)): k in [0..n]])): n in [0..30]]; // G. C. Greubel, May 06 2018
  • Mathematica
    Denominator[Table[LaguerreL[n, -1], {n, 0, 50}]] (* G. C. Greubel, May 06 2018 *)
  • PARI
    lista(nn) = {x = 'x + O('x^nn); v = exp(x/(1-x))/(1-x); for (n=0, nn-1, print1(denominator(polcoeff(v, n)), ", "););} \\ Michel Marcus, Nov 27 2015
    
  • PARI
    for(n=0,30, print1(denominator(sum(k=0,n, binomial(n,k)*(1/k!))), ", ")) \\ G. C. Greubel, May 06 2018
    

A182925 Generalized vertical Bell numbers of order 3.

Original entry on oeis.org

1, 15, 1657, 513559, 326922081, 363303011071, 637056434385865, 1644720885001919607, 5943555582476814384769, 28924444943026683877502191, 183866199607767992029159792281, 1489437787210535537087417039489815
Offset: 0

Views

Author

Peter Luschny, Mar 28 2011

Keywords

Comments

The name "generalized 'vertical' Bell numbers" is used to distinguish them from the generalized (horizontal) Bell numbers with reference to the square array representation of the generalized Bell numbers as given in A090210. a(n) is column 4 in this representation. The order is the parameter M in Penson et al., p. 6, eq. 29.

Crossrefs

Programs

  • Maple
    A182925 := proc(n) exp(-x)*GAMMA(n+1)^3*hypergeom([n+1,n+1,n+1],[1,1,1],x);
    round(evalf(subs(x=1,%),64)) end; seq(A182925(i),i=0..11);
  • Mathematica
    u = 1.`64; a[n_] := n!^3*HypergeometricPFQ[{n+u, n+u, n+u}, {u, u, u}, u]/E // Round; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Nov 22 2012, after Maple *)

Formula

a(n) = exp(-1)*Gamma(n+1)^3*[3F3]([n+1, n+1, n+1], [1, 1, 1] | 1); here [3F3] is the generalized hypergeometric function of type 3F3.
Let B_{n}(x) = Sum_{j>=0}(exp(j!/(j-n)!*x-1)/j!) then a(n) = 4! [x^4] taylor(B_{n}(x)), where [x^4] denotes the coefficient of x^4 in the Taylor series for B_{n}(x).

A283500 Triangle read by rows: T(n,k) = number of n X n (0,1) matrices with at most k 1's in each row or column.

Original entry on oeis.org

2, 7, 16, 34, 265, 512, 209, 7343, 41503, 65536, 1546, 304186, 6474726, 24997921, 33554432, 13327, 17525812, 1709852332, 21252557377, 57366997447, 68719476736, 130922, 1336221251, 702998475376, 34215495252681, 252540841305558, 505874809287625
Offset: 1

Views

Author

R. J. Mathar, Mar 09 2017

Keywords

Examples

			Triangle begins:
2;
7,     16;
34,    265,      512;
209,   7343,     41503,      65536;
1546,  304186,   6474726,    24997921,    33554432;
13327, 17525812, 1709852332, 21252557377, 57366997447, 68719476736;
...
		

Crossrefs

Cf. A002720 (column k=1), A197458 (column k=2), A008300 (exactly k 1s).
Main diagonal and first lower diagonal give: A002416, A048291.
Cf. A247158 (k=n/2).

A330260 a(n) = n! * Sum_{k=0..n} binomial(n,k) * n^(n - k) / k!.

Original entry on oeis.org

1, 2, 17, 352, 13505, 830126, 74717857, 9263893892, 1513712421377, 315230799073690, 81499084718806001, 25612081645835777192, 9615370149488574778177, 4250194195208050117007942, 2184834047906975645398282625, 1292386053018890618812398220876
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 18 2019

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n)*&+[Binomial(n,k)*n^(n-k)/Factorial(k):k in [0..n]]:n in [0..15]]; // Marius A. Burtea, Dec 18 2019
  • Mathematica
    Join[{1}, Table[n! Sum[Binomial[n, k] n^(n - k)/k!, {k, 0, n}], {n, 1, 15}]]
    Join[{1}, Table[n^n n! LaguerreL[n, -1/n], {n, 1, 15}]]
    Table[n! SeriesCoefficient[Exp[x/(1 - n x)]/(1 - n x), {x, 0, n}], {n, 0, 15}]
  • PARI
    a(n) = n! * sum(k=0, n, binomial(n,k) * n^(n-k)/k!); \\ Michel Marcus, Dec 18 2019
    

Formula

a(n) = n! * [x^n] exp(x/(1 - n*x)) / (1 - n*x).
a(n) = Sum_{k=0..n} binomial(n,k)^2 * n^k * k!.
a(n) ~ sqrt(2*Pi) * BesselI(0,2) * n^(2*n + 1/2) / exp(n). - Vaclav Kotesovec, Dec 18 2019

A347204 a(n) = a(f(n)/2) + a(floor((n+f(n))/2)) for n > 0 with a(0) = 1 where f(n) = A129760(n).

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 10, 15, 5, 9, 13, 20, 17, 27, 37, 52, 6, 11, 16, 25, 21, 34, 47, 67, 26, 43, 60, 87, 77, 114, 151, 203, 7, 13, 19, 30, 25, 41, 57, 82, 31, 52, 73, 107, 94, 141, 188, 255, 37, 63, 89, 132, 115, 175, 235, 322, 141, 218, 295, 409, 372, 523, 674
Offset: 0

Views

Author

Mikhail Kurkov, Aug 23 2021 [verification needed]

Keywords

Comments

Modulo 2 binomial transform of A243499(n).

Crossrefs

Programs

  • MATLAB
    function a = A347204(max_n)
        a(1) = 1;
        a(2) = 2;
        for nloop = 3:max_n
            n = nloop-1;
            s = 0;
            for k = 0:floor(log2(n))-1
                s = s + a(1+A053645(n)-2^k*(mod(floor(n/(2^k)),2)));
            end
            a(nloop) = 2*a(A053645(n)+1) + s;
        end
    end
    function a_n = A053645(n)
        a_n = n - 2^floor(log2(n));
    end % Thomas Scheuerle, Oct 25 2021
  • Mathematica
    f[n_] := BitAnd[n, n - 1]; a[0] = 1; a[n_] := a[n] = a[f[n]/2] + a[Floor[(n + f[n])/2]]; Array[a, 100, 0] (* Amiram Eldar, Nov 19 2021 *)
  • PARI
    f(n) = bitand(n, n-1); \\ A129760
    a(n) = if (n<=1, n+1, if (n%2, a(n\2)+a(n-1), a(f(n/2)) + a(n/2+f(n/2)))); \\ Michel Marcus, Oct 25 2021
    
  • PARI
    \\ Also see links.
    
  • PARI
    A129760(n) = bitand(n, n-1);
    memoA347204 = Map();
    A347204(n) = if (n<=1, n+1, my(v); if(mapisdefined(memoA347204,n,&v), v, v = if(n%2, A347204(n\2)+A347204(n-1), A347204(A129760(n/2)) + A347204(n/2+A129760(n/2))); mapput(memoA347204,n,v); (v))); \\ (Memoized version of Michel Marcus's program given above) - Antti Karttunen, Nov 20 2021
    

Formula

a(n) = a(n - 2^f(n)) + (1 + f(n))*a((n - 2^f(n))/2) for n > 0 with a(0) = 1 where f(n) = A007814(n).
a(2n+1) = a(n) + a(2n) for n >= 0.
a(2n) = a(n - 2^f(n)) + a(2n - 2^f(n)) for n > 0 with a(0) = 1 where f(n) = A007814(n).
a(n) = 2*a(f(n)) + Sum_{k=0..floor(log_2(n))-1} a(f(n) - 2^k*T(n,k)) for n > 1 with a(0) = 1, a(1) = 2, and where f(n) = A053645(n), T(n,k) = floor(n/2^k) mod 2.
Sum_{k=0..2^n - 1} a(k) = A035009(n+1) for n >= 0.
a((4^n - 1)/3) = A002720(n) for n >= 0.
a(2^n - 1) = A000110(n+1),
a(2*(2^n - 1)) = A005493(n),
a(2^2*(2^n - 1)) = A005494(n),
a(2^3*(2^n - 1)) = A045379(n),
a(2^4*(2^n - 1)) = A196834(n),
a(2^m*(2^n-1)) = T(n,m+1) is the n-th (m+1)-Bell number for n >= 0, m >= 0 where T(n,m) = m*T(n-1,m) + Sum_{k=0..n-1} binomial(n-1,k)*T(k,m) with T(0,m) = 1.
a(n) = Sum_{j=0..2^A000120(n)-1} A243499(A295989(n,j)) for n >= 0. Also A243499(n) = Sum_{j=0..2^f(n)-1} (-1)^(f(n)-f(j)) a(A295989(n,j)) for n >= 0 where f(n) = A000120(n). In other words, a(n) = Sum_{j=0..n} (binomial(n,j) mod 2)*A243499(j) and A243499(n) = Sum_{j=0..n} (-1)^(f(n)-f(j))*(binomial(n,j) mod 2)*a(j) for n >= 0 where f(n) = A000120(n).
Generalization:
b(n, x) = (1/x)*b((n - 2^f(n))/2, x) + (-1)^n*b(floor((2n - 2^f(n))/2), x) for n > 0 with b(0, x) = 1 where f(n) = A007814(n).
Sum_{k=0..2^n - 1} b(k, x) = (1/x)^n for n >= 0.
b((4^n - 1)/3, x) = (1/x)^n*n!*L_{n}(x) for n >= 0 where L_{n}(x) is the n-th Laguerre polynomial.
b((8^n - 1)/7, x) = (1/x)^n*Sum_{k=0..n} (-x)^k*A265649(n, k) for n >= 0.
b(2^n - 1, x) = (1/x)^n*Sum_{k=0..n} (-x)^k*A008277(n+1, k+1),
b(2*(2^n - 1), x) = (1/x)^n*Sum_{k=0..n} (-x)^k*A143494(n+2, k+2),
b(2^2*(2^n - 1), x) = (1/x)^n*Sum_{k=0..n} (-x)^k*A143495(n+3, k+3),
b(2^m*(2^n - 1), x) = (1/x)^n*Sum_{k=0..n} (-x)^k*T(n+m+1, k+m+1, m+1) for n >= 0, m >= 0 where T(n,k,m) is m-Stirling numbers of the second kind.

A361595 Expansion of e.g.f. exp( (x / (1-x))^3 ) / (1-x).

Original entry on oeis.org

1, 1, 2, 12, 120, 1320, 15480, 199080, 2862720, 46146240, 826156800, 16212873600, 344741443200, 7875365097600, 192137321376000, 4984375210214400, 136994756496998400, 3976455027389644800, 121533921410994892800, 3900447928934548992000
Offset: 0

Views

Author

Seiichi Manyama, Mar 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[Binomial[n,3*k]/k!, {k,0,n/3}], {n,0,20}] (* Vaclav Kotesovec, Mar 17 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((x/(1-x))^3)/(1-x)))

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} binomial(n,3*k)/k!.
From Vaclav Kotesovec, Mar 17 2023: (Start)
a(n) = (4*n - 3)*a(n-1) - 3*(n-1)*(2*n - 3)*a(n-2) + 2*(n-2)*(n-1)*(2*n - 3)*a(n-3) - (n-3)^2*(n-2)*(n-1)*a(n-4).
a(n) ~ 3^(-1/8) * exp(-1/4 + 5*3^(-1/4)*n^(1/4)/8 - sqrt(3*n)/2 + 4*3^(-3/4) * n^(3/4) - n) * n^(n + 1/8) / 2 * (1 + (1511/2560)*3^(1/4)/n^(1/4)). (End)

A361596 Expansion of e.g.f. exp( x^2/(2 * (1-x)^2) ) / (1-x).

Original entry on oeis.org

1, 1, 3, 15, 99, 795, 7485, 80745, 981225, 13253625, 196834995, 3185662095, 55770765435, 1049572599075, 21120725230605, 452384160453225, 10272547048388625, 246434674107647025, 6226347228582355875, 165224032352989584975, 4593512876411509125075
Offset: 0

Views

Author

Seiichi Manyama, Mar 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[Binomial[n,2*k]/(2^k * k!), {k,0,n/2}], {n,0,20}] (* Vaclav Kotesovec, Mar 17 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^2/(2*(1-x)^2))/(1-x)))

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(n,2*k)/(2^k * k!).
From Vaclav Kotesovec, Mar 17 2023: (Start)
a(n) = (3*n - 2)*a(n-1) - (n-1)*(3*n - 5)*a(n-2) + (n-2)^2*(n-1)*a(n-3).
a(n) ~ 3^(-1/2) * exp(1/6 - n^(1/3)/2 + 3*n^(2/3)/2 - n) * n^(n + 1/6) * (1 + 49/(108*n^(1/3)) + 3293/(116640*n^(2/3))). (End)

A361597 Expansion of e.g.f. exp( x^3/(6 * (1-x)^3) ) / (1-x).

Original entry on oeis.org

1, 1, 2, 7, 40, 320, 3130, 34930, 432320, 5866840, 86816800, 1395455600, 24270908200, 454897042600, 9146979842000, 196443726879400, 4486709145318400, 108548344109004800, 2771885136281060800, 74475606190225240000, 2099591224223100608000
Offset: 0

Views

Author

Seiichi Manyama, Mar 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[Binomial[n,3*k]/(6^k * k!), {k,0,n/3}], {n,0,20}] (* Vaclav Kotesovec, Mar 17 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^3/(6*(1-x)^3))/(1-x)))

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} binomial(n,3*k)/(6^k * k!).
From Vaclav Kotesovec, Mar 17 2023: (Start)
Recurrence: 2*a(n) = 2*(4*n - 3)*a(n-1) - 6*(n-1)*(2*n - 3)*a(n-2) + (n-2)*(n-1)*(8*n - 17)*a(n-3) - 2*(n-3)^2*(n-2)*(n-1)*a(n-4).
a(n) ~ 2^(-7/8) * exp(-1/24 + 5*2^(-15/4)*n^(1/4)/3 - sqrt(n/2)/2 + 2^(7/4)*n^(3/4)/3 - n) * n^(n + 1/8) * (1 + (2637/10240)*2^(3/4)/n^(1/4)). (End)

A002738 Coefficients for extrapolation.

Original entry on oeis.org

3, 60, 630, 5040, 34650, 216216, 1261260, 7001280, 37413090, 193993800, 981608628, 4867480800, 23728968900, 114011377200, 540972351000, 2538963567360, 11802213457650, 54396360988200, 248812984520100, 1130341536324000, 5103492036502860, 22913637714910800
Offset: 0

Views

Author

Keywords

Comments

Let H be the n X n Hilbert matrix H(i,j) = 1/(i+j-1) for 1 <= i,j <= n. Let B be the inverse matrix of H. The sum of the elements in row n-2 of B equals a(n-3). - T. D. Noe, May 01 2011

References

  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A331431.

Programs

  • Magma
    [3*Binomial(2*n+3,n)*Binomial(n+3,3): n in [0..30]]; // G. C. Greubel, Mar 21 2022
    
  • Mathematica
    Table[Total[Inverse[HilbertMatrix[n]][[n - 2]]], {n, 3, 25}] (* T. D. Noe, May 02 2011 *)
  • Sage
    [3*binomial(2*n+3,3)*binomial(2*n,n) for n in (0..30)] # G. C. Greubel, Mar 21 2022

Formula

From Alois P. Heinz, May 02 2011: (Start)
a(n) = 3*binomial(2*n+3,n)*binomial(n+3,n).
G.f.: 3*(1 + 6*x)/(1-4*x)^(7/2). (End)
a(n) = binomial(2*n+3,n)*(n^3 + 6*n^2 + 11*n+6)/2. - Charles R Greathouse IV, May 02 2011
a(n) = 3*A007744(n). - R. J. Mathar, Jan 21 2020
a(n) = (3/2)*( 5*A020918(n) - 3*A002802(n)). - G. C. Greubel, Mar 21 2022

Extensions

Extended by T. D. Noe, May 01 2011
Previous Showing 101-110 of 158 results. Next