cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A110609 a(n) = n * binomial(2*n, n-1).

Original entry on oeis.org

0, 1, 8, 45, 224, 1050, 4752, 21021, 91520, 393822, 1679600, 7113106, 29953728, 125550100, 524190240, 2181340125, 9051563520, 37467344310, 154754938800, 637982011590, 2625648168000, 10789623755820, 44277560801760, 181478535620850, 742984788858624, 3038716500907500
Offset: 0

Views

Author

Paul Barry, Jul 30 2005

Keywords

Crossrefs

Column k=1 of A110608.

Programs

  • Magma
    [0] cat [((4*n+4)*(2*n+1)*Binomial(2*n, n)/(n+2))/2: n in [0..25]]; // Vincenzo Librandi, Jan 09 2015
    
  • Maple
    with(combinat):with(combstruct):a[0]:=0:for n from 1 to 30 do a[n]:=sum((count(Composition(n*2+1),size=n)),j=1..n) od: seq(a[n], n=0..22); # Zerinvary Lajos, May 09 2007
    a:=n->sum(sum(binomial(2*n,n)/(n+1), j=1..n),k=1..n): seq(a(n), n=0..22); # Zerinvary Lajos, May 09 2007
    series(simplify(x*diff(x*diff((1-sqrt(1-4*x))/(2*x), x), x)), x, 20):
    seq(coeff(%, x, k), k=0..18); # Karol A. Penson, Apr 25 2025
  • Mathematica
    Table[CatalanNumber[n]*n^2, {n, 0, 22}] (* Zerinvary Lajos, Jul 08 2009 *)
    CoefficientList[Series[x (1 / x^2 - (1 - 6 x + 4 x^2) / ((1 - 4 x)^(3/2) x^2)) / 2, {x, 0, 30}], x] (* Vincenzo Librandi, Jan 09 2015 *)
  • PARI
    for(n=0,25, print1(n*binomial(2*n,n-1), ", ")) \\ G. C. Greubel, Sep 01 2017

Formula

a(n) = n^2*binomial(2*n, n)/(n+1) = n^2*A000108(n) = A002736(n)/(n+1).
G.f.: -(2*x*(2*x+2*sqrt(1-4*x)-3) - sqrt(1-4*x) + 1)/(2*sqrt((1 - 4*x)^3)*x). - Marco A. Cisneros Guevara, Jul 23 2011; amended by Georg Fischer, Apr 09 2020
(n+1)*(10*n-7)*a(n)+2*n*(5*n-88)*a(n-1) -4*(25*n-22)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 07 2012
From Ilya Gutkovskiy, Jan 20 2017: (Start)
E.g.f.: x*(BesselI(0,2*x) + 2*BesselI(1,2*x) + BesselI(2,2*x))*exp(2*x).
a(n) ~ 4^n*sqrt(n)/sqrt(Pi).
Sum_{n>=1} 1/a(n) = Pi*(2*sqrt(3) + Pi)/18 = 1.152911143694148... (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (2/sqrt(5))*log(phi) + 2*log(phi)^2, where log(phi) = A002390. - Amiram Eldar, Feb 20 2021
G.f.: (x*(d/dx))^2 [g.f. of A000108]. - Karol A. Penson, Apr 25 2025

A189765 Triangle in which row n has the n(n+1)/2 elements of the lower triangular part of the inverse of the n-th order Hilbert matrix.

Original entry on oeis.org

1, 4, -6, 12, 9, -36, 192, 30, -180, 180, 16, -120, 1200, 240, -2700, 6480, -140, 1680, -4200, 2800, 25, -300, 4800, 1050, -18900, 79380, -1400, 26880, -117600, 179200, 630, -12600, 56700, -88200, 44100, 36, -630, 14700, 3360, -88200, 564480, -7560, 211680
Offset: 1

Views

Author

T. D. Noe, May 02 2011

Keywords

Comments

The n-th order Hilbert matrix has elements h(i,j) = 1/(i+j-1) for 1 <= i,j <=n. Only the lower triangular matrix is shown because the Hilbert matrix and its inverse are symmetric. The n-th row begins with n^2 and ends with A000515(n+1).
The sums of select rows of the inverse matrix are sequences A002457, A002736, A002738, A007531, and A054559.
The largest magnitude in the matrix is A210356(n). - T. D. Noe, Mar 28 2012
The sum of the elements of the n-th matrix is n^2. - T. D. Noe, Apr 02 2012

Examples

			Row 3 is 9, -36, 192, 30, -180, 180 which corresponds to the inverse
  9  -36   30
-36  192 -180
30 -180  180
		

Crossrefs

Cf. A002457, A002736, A002738, A005249 (determinant), A007531, A054559, A189766 (trace).

Programs

  • Mathematica
    lowerTri[m_List] := Module[{n = Length[m]}, Flatten[Table[Take[m[[i]], i], {i, n}]]]; Flatten[Table[lowerTri[Inverse[HilbertMatrix[n]]], {n, 6}]]

Formula

a(n,i,j) = (-1)^(i+j) (i+j-1) binomial(n+i-1, n-j) binomial(n+j-1, n-i) binomial(i+j-2, i-1)^2 is the (i,j) element of the inverse of the n-th Hilbert matrix.

A069121 a(n) = n^4*binomial(2n,n).

Original entry on oeis.org

0, 2, 96, 1620, 17920, 157500, 1197504, 8240232, 52715520, 318995820, 1847560000, 10328229912, 56073378816, 297051536600, 1541119305600, 7852824450000, 39392404439040, 194905125100620, 952671403252800
Offset: 0

Views

Author

Benoit Cloitre, Apr 07 2002

Keywords

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 386.

Crossrefs

Cf. A002736.

Programs

  • Maple
    with(combinat):for n from 0 to 18 do printf(`%d, `,n^3*sum(binomial(2*n, n), k=1..n)) od: # Zerinvary Lajos, Mar 13 2007
  • Mathematica
    Table[n^4*Binomial[2 n, n], {n, 0, 18}] (* or *)
    CoefficientList[Series[2 x (1 + 30 x + 72 x^2 + 8 x^3)/(1 - 4 x)^(9/2), {x, 0, 18}], x] (* Michael De Vlieger, Feb 07 2017 *)
  • PARI
    a(n)=if(n<1,0,n^4*binomial(2*n,n))

Formula

Sum_{n>=1} 1/a(n) = 17*Pi^4/3240. (Comtet, 1974)
a(n) = a(n-1)*(4*n-2)*n^3/(n-1)^4, n>1. - Michael Somos, Apr 18 2003
Equals A002736*n^2. - Zerinvary Lajos, May 28 2006
From Ilya Gutkovskiy, Feb 07 2017: (Start)
G.f.: 2*x*(1 + 30*x + 72*x^2 + 8*x^3)/(1 - 4*x)^(9/2).
a(n) ~ 4^n*n^(7/2)/sqrt(Pi). (End)

A119553 Binomial(binomial(2*n,n)*n^2,n).

Original entry on oeis.org

1, 2, 276, 955860, 65212649320, 82571843488838760, 1880695497510691320340728, 754603377505528950689544452061864, 5254517954094415196615118245270696186523600
Offset: 0

Views

Author

Zerinvary Lajos, May 30 2006

Keywords

Crossrefs

Cf. A002736.

Programs

  • Maple
    [seq (binomial(binomial(2*n,n)*n^2,n),n=0..10)];

A131972 Sum of all n-digit Apery numbers.

Original entry on oeis.org

2, 24, 180, 7420, 33264, 991848, 3938220, 103832872, 389398464, 9620555000, 34901442000, 828288777420, 2940343837200, 67898251759800, 237371722628040, 5373868753340880, 97581248745060600, 335240928272918304, 7415892272293658608, 25286571126114014640, 553714770886681187168
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 06 2007

Keywords

Examples

			Sum of all 1-digit Apery numbers is 0 + 2 = 2.
Sum of all 2-digit Apery numbers is 24
Sum of all 3-digit Apery numbers is 180.
		

Crossrefs

Cf. A002736.

Programs

  • Mathematica
    digNum[n_] := Length @ IntegerDigits[n]; apery[n_] := n^2 * Binomial[2n, n]; digCount = 0; sum = 0; cumsum = {}; Do[a = apery[n]; If[digNum[a] > digCount, digCount++; AppendTo[cumsum, sum]]; sum += a, {n, 0, 35}]; Differences[cumsum] (* Amiram Eldar, Nov 30 2019 *)

Extensions

More terms from Amiram Eldar, Nov 30 2019

A339470 Decimal expansion of log(phi)^2, where phi is the golden ratio (A002390^2).

Original entry on oeis.org

2, 3, 1, 5, 6, 4, 8, 2, 0, 5, 7, 7, 1, 9, 4, 3, 9, 2, 4, 9, 6, 9, 2, 9, 0, 7, 1, 2, 3, 1, 5, 3, 2, 7, 6, 0, 0, 1, 6, 4, 0, 6, 3, 5, 0, 0, 4, 9, 2, 9, 8, 8, 7, 0, 8, 1, 5, 3, 0, 1, 2, 2, 8, 6, 8, 9, 7, 9, 5, 3, 4, 5, 5, 6, 6, 9, 6, 1, 8, 1, 2, 9, 8, 5, 0, 5, 4
Offset: 0

Views

Author

Robert Bilinski, Dec 06 2020

Keywords

Examples

			0.2315648205771943924969290712315327600164063500492988708153012286...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[GoldenRatio]^2, 10, 100][[1]] (* Amiram Eldar, Dec 06 2020 *)
  • PARI
    asinh(1/2)^2 \\ Michel Marcus, Dec 06 2020

Formula

Equals arcsinh(1/2)^2 = A002390^2.
Equals (1/2)*Sum_{k>=1} ((k!)^2*(-1)^(k+1))/((2*k)!*k^2) = A086467/2.
Equals (1/3)*(zeta(2) - Sum_{k>=1} ((k!)^2*(-1)^k)/((2*k)!*(2*k+1)^2)).
Equals (1/2)*Sum_{k>=1} (-1)^(k+1)/A002736(k).
Previous Showing 11-16 of 16 results.