cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A258431 Sum over all peaks of Dyck paths of semilength n of the arithmetic mean of the x and y coordinates.

Original entry on oeis.org

0, 1, 5, 23, 102, 443, 1898, 8054, 33932, 142163, 592962, 2464226, 10209620, 42190558, 173962532, 715908428, 2941192472, 12065310083, 49428043442, 202249741418, 826671597572, 3375609654698, 13771567556012, 56138319705908, 228669994187432, 930803778591278
Offset: 0

Views

Author

Alois P. Heinz, May 29 2015

Keywords

Comments

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U = (1,1) and D = (1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.

Crossrefs

Programs

  • Magma
    A258431:= func< n | n eq 0 select 0 else (4^(n-1) + Factorial(2*n-1)/Factorial(n-1)^2)/2 >;
    [A258431(n): n in [0..40]]; // G. C. Greubel, Mar 18 2023
    
  • Maple
    a:= proc(n) option remember; `if`(n<3, [0, 1, 5][n+1],
           ((8*n-10)*a(n-1)-(16*n-24)*a(n-2))/(n-1))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[0]=0; a[1]=1; a[2]=5;
    a[n_]:= a[n]= (2*(4*n-5)*a[n-1] - 8*(2*n-3)*a[n-2])/(n-1);
    Table[a[n], {n,0,30}] (* Jean-François Alcover, May 31 2018, from Maple *)
  • SageMath
    def A258431(n): return 0 if (n==0) else (4^(n-1) + factorial(2*n-1)/factorial(n-1)^2)/2
    [A258431(n) for n in range(41)] # G. C. Greubel, Mar 18 2023

Formula

G.f.: x*(1 + sqrt(1-4*x))/(2*sqrt(1-4*x)^3).
a(n) = (2*(4*n-5)*a(n-1) - 8*(2*n-3)*a(n-2))/(n-1) for n>2, a(0)=0, a(1)=1, a(2)=5.
a(n) = (4^(n-1) + (2*n-1)!/(n-1)!^2)/2 for n>0, a(0) = 0.
a(n) = (A000302(n-1) + A002457(n-1))/2 for n>0, a(0) = 0.
a(n) = (1/2)*binomial(2*n,n)*( 1 + 2*(n-1)/(n+1) + 3*(n-1)*(n-2)/((n+1)*(n+2)) + 4*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + 5*(n-1)*(n-2)*(n-3)*(n-4)/((n+1)*(n+2)*(n+3)*(n+4)) + ...) for n >= 1. - Peter Bala, Feb 17 2022

A000911 a(n) = (2n+3)! /( n! * (n+1)! ).

Original entry on oeis.org

6, 60, 420, 2520, 13860, 72072, 360360, 1750320, 8314020, 38798760, 178474296, 811246800, 3650610600, 16287339600, 72129646800, 317370445920, 1388495700900, 6044040109800, 26190840475800, 113034153632400, 486046860619320, 2083057974082800, 8900338616535600
Offset: 0

Views

Author

Keywords

Examples

			6 + 60*x + 420*x^2 + 2520*x^3 + 13860*x^4 + 72072*x^5 + 360360*x^6 + ...
		

References

  • E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 99.

Crossrefs

Programs

  • Maple
    seq(binomial(2*n,n)*binomial(n,(n-2)), n=2..21); # Zerinvary Lajos, May 10 2007
  • Mathematica
    Table[(2 n + 3)!/(n!*(n + 1)!), {n, 0, 20}] (* T. D. Noe, Jun 20 2012 *)
  • PARI
    a(n) = 2^(n+4)*polcoeff(pollegendre(n+4),n) /* Ralf Stephan */

Formula

a(n) = 2 * A051133(n+1).
a(n) = A000984(n+1)*A000217(n). - Zerinvary Lajos, May 10 2007
a(n) = 6 * A002802(n). - Zerinvary Lajos, Jun 02 2007
n*a(n) - 2*(2*n+3)*a(n-1) = 0. - R. J. Mathar, Jun 07 2013
G.f.: 6*(1+10*x/( G(0)- 10*x)), where G(k)= 2*x*(2*k+5) + k + 1 - 2*x*(k+1)*(2*k+7)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 14 2013
Sum_{n>=0} (-1)^n/a(n) = 5*A086466-2 = 2*log(phi)*sqrt(5)-2 = 0.1520447... - Jean-François Alcover, Apr 22 2014
From Ilya Gutkovskiy, Jan 31 2017: (Start)
G.f.: 6/(1 - 4*x)^(5/2).
a(n) ~ 2^(2*n+3)*n^(3/2)/sqrt(Pi). (End)
Sum_{n>=0} 1/a(n) = 2 - Pi/sqrt(3) = 2 - A093602. - Amiram Eldar, Oct 13 2020

A370235 Table read by rows. Number of set partitions of [n] with respect to genus g.

Original entry on oeis.org

1, 1, 2, 5, 14, 1, 42, 10, 132, 70, 1, 429, 420, 28, 1430, 2310, 399, 1, 4862, 12012, 4179, 94, 16796, 60060, 36498, 2620, 1, 58786, 291720, 282282, 45430, 352, 208012, 1385670, 1999998, 600655, 19261, 1, 742900, 6466460, 13258674, 6633484, 541541, 1378
Offset: 0

Views

Author

Peter Luschny, Feb 15 2024

Keywords

Comments

The table shows the number of partitions of [n] = {1, 2, 3, ..., n} with genus g.
The set of noncrossing partitions is exactly the set of genus zero partitions. The numbers corresponding to this case are the Catalan numbers.
This is essentially table 2.1 in Martha Yip's thesis (p. 12).
From Robert Coquereaux, Feb 16 2024: (Start)
The two-dimensional array is called triangle of genus-dependent Bell numbers B(n, g); if n >= 1, n even, nonzero values are obtained for 0 <= g <= floor((n-1)/2); if n >= 1, odd, nonzero values are obtained for 0 <= g < (n-1)/2.
The two-dimensional array B(n, g) can be obtained from a three-dimensional array S2(n, k, g), by summation over the number k of blocks. The numbers S2(n, k, g) are genus-dependent Stirling numbers of the second kind. They give the number of genus g partitions of the n-set which are partitions into k nonempty subsets (blocks). The numbers S2(n, k, g) are discussed in A370420.
(End)

Examples

			[n\g]     0        1        2      3      4     5
-------------------------------------------------
[ 0]      1;
[ 1]      1;
[ 2]      2;
[ 3]      5;
[ 4]     14,       1;
[ 5]     42,      10;
[ 6]    132,      70,        1;
[ 7]    429,     420,       28;
[ 8]   1430,    2310,      399,       1;
[ 9]   4862,   12012,     4179,      94;
[10]  16796,   60060,    36498,    2620,      1;
[11]  58786,  291720,   282282,   45430,    352;
[12] 208012, 1385670,  1999998,  600655,  19261,    1;
[13] 742900, 6466460, 13258674, 6633484, 541541, 1378;
		

Crossrefs

Columns: A000108 (g=0), A002802 (g=1), A297179 (g=2), A370237 (g=3).
Cf. A000110 (row sums), A177267 (permutations by genus).
Cf. A370420 (S2(n,k,g)).

A002738 Coefficients for extrapolation.

Original entry on oeis.org

3, 60, 630, 5040, 34650, 216216, 1261260, 7001280, 37413090, 193993800, 981608628, 4867480800, 23728968900, 114011377200, 540972351000, 2538963567360, 11802213457650, 54396360988200, 248812984520100, 1130341536324000, 5103492036502860, 22913637714910800
Offset: 0

Views

Author

Keywords

Comments

Let H be the n X n Hilbert matrix H(i,j) = 1/(i+j-1) for 1 <= i,j <= n. Let B be the inverse matrix of H. The sum of the elements in row n-2 of B equals a(n-3). - T. D. Noe, May 01 2011

References

  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A331431.

Programs

  • Magma
    [3*Binomial(2*n+3,n)*Binomial(n+3,3): n in [0..30]]; // G. C. Greubel, Mar 21 2022
    
  • Mathematica
    Table[Total[Inverse[HilbertMatrix[n]][[n - 2]]], {n, 3, 25}] (* T. D. Noe, May 02 2011 *)
  • Sage
    [3*binomial(2*n+3,3)*binomial(2*n,n) for n in (0..30)] # G. C. Greubel, Mar 21 2022

Formula

From Alois P. Heinz, May 02 2011: (Start)
a(n) = 3*binomial(2*n+3,n)*binomial(n+3,n).
G.f.: 3*(1 + 6*x)/(1-4*x)^(7/2). (End)
a(n) = binomial(2*n+3,n)*(n^3 + 6*n^2 + 11*n+6)/2. - Charles R Greathouse IV, May 02 2011
a(n) = 3*A007744(n). - R. J. Mathar, Jan 21 2020
a(n) = (3/2)*( 5*A020918(n) - 3*A002802(n)). - G. C. Greubel, Mar 21 2022

Extensions

Extended by T. D. Noe, May 01 2011

A370236 Triangle read by rows: T(n, k) is the number of partitions of genus 1 and k parts of the n-set (n >= 4, 2 <= k <= n-2).

Original entry on oeis.org

1, 5, 5, 15, 40, 15, 35, 175, 175, 35, 70, 560, 1050, 560, 70, 126, 1470, 4410, 4410, 1470, 126, 210, 3360, 14700, 23520, 14700, 3360, 210, 330, 6930, 41580, 97020, 97020, 41580, 6930, 330, 495, 13200, 103950, 332640, 485100, 332640, 103950, 13200, 495
Offset: 4

Views

Author

Robert Coquereaux, Feb 12 2024

Keywords

Comments

The formula given below was conjectured by Martha Yip and proved by Robert Cori and Gábor Hetyei.
More generally one may consider genus-dependent Stirling numbers S(n, k, g) that count the partitions of genus g and k parts of the n-set.
Then T(n, k) = S(n, k, 1). See Robert Coquereaux and Jean-Bernard Zuber.

Examples

			Triangle begins (see Table 3.1 in Yip's thesis):
    1;
    5,    5;
   15,   40,   15;
   35,  175,  175,   35;
   70,  560, 1050,  560,   70;
  126, 1470, 4410, 4410, 1470, 126;
		

Crossrefs

Row sums are A002802.
Cf. A000332, A297178 (genus 2).

Programs

  • Mathematica
    T[n_,k_] := (1/6) Binomial[n, 2] Binomial[n-2, k] Binomial[n-2, k-2];
    Table[T[n,k],{n,4,12},{k,2,n-2}]//Flatten (* Stefano Spezia, Feb 14 2024 *)

Formula

T(n, k) = (1/6)*binomial(n, 2)*binomial(n-2, k)*binomial(n-2, k-2).

A382515 Expansion of 1/(1 - x/(1 - 4*x)^(5/2)).

Original entry on oeis.org

1, 1, 11, 91, 691, 5101, 37323, 272405, 1987047, 14493479, 105718071, 771148119, 5625136651, 41032826127, 299316769887, 2183389173811, 15926906427179, 116180104751925, 847485191674867, 6182049517420133, 45095462188117951, 328952511222499589, 2399570809473795931
Offset: 0

Views

Author

Seiichi Manyama, Mar 30 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[4^(n-k)*Binomial[n+3*k/2-1,n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Mar 30 2025 *)
  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*binomial(n+3*k/2-1, n-k));

Formula

a(n) = Sum_{k=0..n} 4^(n-k) * binomial(n+3*k/2-1,n-k).
D-finite with recurrence (-n+1)*a(n) +2*(12*n-19)*a(n-1) +(-239*n+519)*a(n-2) +2*(638*n-1751)*a(n-3) +1280*(-3*n+10)*a(n-4) +512*(12*n-47)*a(n-5) +2048*(-2*n+9)*a(n-6)=0. - R. J. Mathar, Mar 31 2025

A387341 Expansion of 1/(1 - 6*x + x^2)^(5/2).

Original entry on oeis.org

1, 15, 155, 1365, 10990, 83538, 610050, 4325310, 29979015, 204086025, 1369220853, 9075850875, 59550467340, 387359772660, 2500864350900, 16040872988748, 102298452571965, 649077104453715, 4099652984281855, 25788295829930865, 161619907171129946, 1009512779437342950
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/(1 - 6*x + x^2)^(5/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 28 2025
  • Mathematica
    CoefficientList[Series[1/(1-6*x+x^2)^(5/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 28 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-6*x+x^2)^(5/2))
    

Formula

n*a(n) = 3*(2*n+3)*a(n-1) - (n+3)*a(n-2) for n > 1.
a(n) = (binomial(n+4,2)/6) * A387337(n).
a(n) = (-1)^n * Sum_{k=0..n} (1/6)^(n-2*k) * binomial(-5/2,k) * binomial(k,n-k).
a(n) = A277660(n+2)/2.
a(n) ~ n^(3/2) * (1 + sqrt(2))^(2*n+5) / (3*2^(17/4)*sqrt(Pi)). - Vaclav Kotesovec, Aug 27 2025

A041001 Convolution of A000108(n+1), n >= 0, (Catalan numbers) with A038845 (3-fold convolution of powers of 4).

Original entry on oeis.org

1, 14, 125, 906, 5810, 34364, 191901, 1026610, 5312230, 26767940, 131990066, 639210404, 3048892740, 14354652152, 66828135005, 308078809794, 1408022619806, 6385966846580, 28765327498278, 128777533131500
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A038836 with A000984 (central binomial coefficients); also convolution of A001791(n+1), n >= 0, with A002802; also convolution of A008549(n+1), n >= 0, with A002697; also convolution of A029760 with A002457; also convolution of A038806(n+1), n >= 0, with A000302 (powers of 4).

Formula

a(n) = (n+3)*(3*(n+6)*2^(2*n+3)-(n+4)*binomial(2*n+7, n+3))/12; G.f. (c(x)^2)/(1-4*x)^3, where c(x) = g.f. for Catalan numbers.

A323223 a(n) = [x^n] x/((1 - x)*(1 - 4*x)^(5/2)).

Original entry on oeis.org

0, 1, 11, 81, 501, 2811, 14823, 74883, 366603, 1752273, 8218733, 37964449, 173172249, 781607349, 3496163949, 15517771749, 68412846069, 299828796219, 1307168814519, 5672308893819, 24511334499219, 105519144602439, 452695473616239, 1936085243038839, 8256615564926439
Offset: 0

Views

Author

Peter Luschny, Jan 26 2019

Keywords

Crossrefs

Row 5 of A323222.
Cf. A002802.

Programs

  • Maple
    A323223List := proc(len) local ogf, ser; ogf := (1 - 4*x)^(-5/2)*x/(1 - x);
    ser := series(ogf, x, (n+1)*len+1); seq(coeff(ser, x, j), j=0..len) end:
    A323223List(24);
    # Alternative:
    a := proc(n) option remember; `if`(n<2,n,((5*n+1)*a(n-1)-(4*n+2)*a(n-2))/(n-1)) end: seq(a(n), n=0..24);

Formula

a(n) = ((5*n + 1)*a(n-1) - (4*n + 2)*a(n-2))/(n - 1) for n >= 2.
a(n) = -(-4)^n*binomial(-5/2, n)*hypergeom([1, n+5/2], [n+1], 4) - i*sqrt(3)/27.
a(n) ~ 2^(2*n+2) * n^(3/2) / (9*sqrt(Pi)). - Vaclav Kotesovec, Jan 29 2019
a(n+1) - a(n) = A002802(n). - Seiichi Manyama, Jan 29 2019

A387343 Expansion of 1/(1 - 8*x + 4*x^2)^(5/2).

Original entry on oeis.org

1, 20, 270, 3080, 31990, 312984, 2937900, 26751120, 237977190, 2078447800, 17884238372, 152002796400, 1278603975740, 10660760170480, 88213513627800, 725107271106336, 5925674432448390, 48175954959638520, 389871795632108020, 3142078444590396080, 25228464363569709396
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/(1 - 8*x + 4*x^2)^(5/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 28 2025
  • Mathematica
    CoefficientList[Series[1/(1-8*x+4*x^2)^(5/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 28 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-8*x+4*x^2)^(5/2))
    

Formula

n*a(n) = 4*(2*n+3)*a(n-1) - 4*(n+3)*a(n-2) for n > 1.
a(n) = (binomial(n+4,2)/6) * A387339(n).
a(n) = (-1)^n * Sum_{k=0..n} (1/2)^(n-4*k) * binomial(-5/2,k) * binomial(k,n-k).
Previous Showing 31-40 of 46 results. Next