A258431
Sum over all peaks of Dyck paths of semilength n of the arithmetic mean of the x and y coordinates.
Original entry on oeis.org
0, 1, 5, 23, 102, 443, 1898, 8054, 33932, 142163, 592962, 2464226, 10209620, 42190558, 173962532, 715908428, 2941192472, 12065310083, 49428043442, 202249741418, 826671597572, 3375609654698, 13771567556012, 56138319705908, 228669994187432, 930803778591278
Offset: 0
-
A258431:= func< n | n eq 0 select 0 else (4^(n-1) + Factorial(2*n-1)/Factorial(n-1)^2)/2 >;
[A258431(n): n in [0..40]]; // G. C. Greubel, Mar 18 2023
-
a:= proc(n) option remember; `if`(n<3, [0, 1, 5][n+1],
((8*n-10)*a(n-1)-(16*n-24)*a(n-2))/(n-1))
end:
seq(a(n), n=0..30);
-
a[0]=0; a[1]=1; a[2]=5;
a[n_]:= a[n]= (2*(4*n-5)*a[n-1] - 8*(2*n-3)*a[n-2])/(n-1);
Table[a[n], {n,0,30}] (* Jean-François Alcover, May 31 2018, from Maple *)
-
def A258431(n): return 0 if (n==0) else (4^(n-1) + factorial(2*n-1)/factorial(n-1)^2)/2
[A258431(n) for n in range(41)] # G. C. Greubel, Mar 18 2023
A000911
a(n) = (2n+3)! /( n! * (n+1)! ).
Original entry on oeis.org
6, 60, 420, 2520, 13860, 72072, 360360, 1750320, 8314020, 38798760, 178474296, 811246800, 3650610600, 16287339600, 72129646800, 317370445920, 1388495700900, 6044040109800, 26190840475800, 113034153632400, 486046860619320, 2083057974082800, 8900338616535600
Offset: 0
6 + 60*x + 420*x^2 + 2520*x^3 + 13860*x^4 + 72072*x^5 + 360360*x^6 + ...
- E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 99.
-
seq(binomial(2*n,n)*binomial(n,(n-2)), n=2..21); # Zerinvary Lajos, May 10 2007
-
Table[(2 n + 3)!/(n!*(n + 1)!), {n, 0, 20}] (* T. D. Noe, Jun 20 2012 *)
-
a(n) = 2^(n+4)*polcoeff(pollegendre(n+4),n) /* Ralf Stephan */
A370235
Table read by rows. Number of set partitions of [n] with respect to genus g.
Original entry on oeis.org
1, 1, 2, 5, 14, 1, 42, 10, 132, 70, 1, 429, 420, 28, 1430, 2310, 399, 1, 4862, 12012, 4179, 94, 16796, 60060, 36498, 2620, 1, 58786, 291720, 282282, 45430, 352, 208012, 1385670, 1999998, 600655, 19261, 1, 742900, 6466460, 13258674, 6633484, 541541, 1378
Offset: 0
[n\g] 0 1 2 3 4 5
-------------------------------------------------
[ 0] 1;
[ 1] 1;
[ 2] 2;
[ 3] 5;
[ 4] 14, 1;
[ 5] 42, 10;
[ 6] 132, 70, 1;
[ 7] 429, 420, 28;
[ 8] 1430, 2310, 399, 1;
[ 9] 4862, 12012, 4179, 94;
[10] 16796, 60060, 36498, 2620, 1;
[11] 58786, 291720, 282282, 45430, 352;
[12] 208012, 1385670, 1999998, 600655, 19261, 1;
[13] 742900, 6466460, 13258674, 6633484, 541541, 1378;
- Robert Coquereaux, Table of n, a(n) for n = 0..57 (rows 0..15)
- Martha Yip, Genus one partitions, Master Thesis, University of Waterloo, 2006. [Typos in Table 2.1 in positions T(8, 0) and T(10, 0)].
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 4, 5, 22. Also in JIS, Journal of Integer Sequences, Vol. 27 (2024), Article 24.2.6. See p. 8, 9, 10, 32.
A002738
Coefficients for extrapolation.
Original entry on oeis.org
3, 60, 630, 5040, 34650, 216216, 1261260, 7001280, 37413090, 193993800, 981608628, 4867480800, 23728968900, 114011377200, 540972351000, 2538963567360, 11802213457650, 54396360988200, 248812984520100, 1130341536324000, 5103492036502860, 22913637714910800
Offset: 0
- J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
[3*Binomial(2*n+3,n)*Binomial(n+3,3): n in [0..30]]; // G. C. Greubel, Mar 21 2022
-
Table[Total[Inverse[HilbertMatrix[n]][[n - 2]]], {n, 3, 25}] (* T. D. Noe, May 02 2011 *)
-
[3*binomial(2*n+3,3)*binomial(2*n,n) for n in (0..30)] # G. C. Greubel, Mar 21 2022
A370236
Triangle read by rows: T(n, k) is the number of partitions of genus 1 and k parts of the n-set (n >= 4, 2 <= k <= n-2).
Original entry on oeis.org
1, 5, 5, 15, 40, 15, 35, 175, 175, 35, 70, 560, 1050, 560, 70, 126, 1470, 4410, 4410, 1470, 126, 210, 3360, 14700, 23520, 14700, 3360, 210, 330, 6930, 41580, 97020, 97020, 41580, 6930, 330, 495, 13200, 103950, 332640, 485100, 332640, 103950, 13200, 495
Offset: 4
Triangle begins (see Table 3.1 in Yip's thesis):
1;
5, 5;
15, 40, 15;
35, 175, 175, 35;
70, 560, 1050, 560, 70;
126, 1470, 4410, 4410, 1470, 126;
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus: a compendium of results, Journal of Integer Sequences, Vol. 27 (2024), Article 24.2.6. See p. 9. See also arXiv:2305.01100, 2023.
- Robert Cori and Gábor Hetyei, Counting genus one partitions and permutations, arXiv:1306.4628 [math.CO], 2013.
- Robert Cori and Gábor Hetyei, Counting genus one partitions and permutations, Sémin. Lothar. Comb. 70, B70e, 30 p. (2014).
- Martha Yip, Genus one partitions, Master Thesis, University of Waterloo, 2006.
-
T[n_,k_] := (1/6) Binomial[n, 2] Binomial[n-2, k] Binomial[n-2, k-2];
Table[T[n,k],{n,4,12},{k,2,n-2}]//Flatten (* Stefano Spezia, Feb 14 2024 *)
A382515
Expansion of 1/(1 - x/(1 - 4*x)^(5/2)).
Original entry on oeis.org
1, 1, 11, 91, 691, 5101, 37323, 272405, 1987047, 14493479, 105718071, 771148119, 5625136651, 41032826127, 299316769887, 2183389173811, 15926906427179, 116180104751925, 847485191674867, 6182049517420133, 45095462188117951, 328952511222499589, 2399570809473795931
Offset: 0
-
Table[Sum[4^(n-k)*Binomial[n+3*k/2-1,n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Mar 30 2025 *)
-
a(n) = sum(k=0, n, 4^(n-k)*binomial(n+3*k/2-1, n-k));
A387341
Expansion of 1/(1 - 6*x + x^2)^(5/2).
Original entry on oeis.org
1, 15, 155, 1365, 10990, 83538, 610050, 4325310, 29979015, 204086025, 1369220853, 9075850875, 59550467340, 387359772660, 2500864350900, 16040872988748, 102298452571965, 649077104453715, 4099652984281855, 25788295829930865, 161619907171129946, 1009512779437342950
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := 1/(1 - 6*x + x^2)^(5/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 28 2025
-
CoefficientList[Series[1/(1-6*x+x^2)^(5/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 28 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(1/(1-6*x+x^2)^(5/2))
A041001
Convolution of A000108(n+1), n >= 0, (Catalan numbers) with A038845 (3-fold convolution of powers of 4).
Original entry on oeis.org
1, 14, 125, 906, 5810, 34364, 191901, 1026610, 5312230, 26767940, 131990066, 639210404, 3048892740, 14354652152, 66828135005, 308078809794, 1408022619806, 6385966846580, 28765327498278, 128777533131500
Offset: 0
A323223
a(n) = [x^n] x/((1 - x)*(1 - 4*x)^(5/2)).
Original entry on oeis.org
0, 1, 11, 81, 501, 2811, 14823, 74883, 366603, 1752273, 8218733, 37964449, 173172249, 781607349, 3496163949, 15517771749, 68412846069, 299828796219, 1307168814519, 5672308893819, 24511334499219, 105519144602439, 452695473616239, 1936085243038839, 8256615564926439
Offset: 0
-
A323223List := proc(len) local ogf, ser; ogf := (1 - 4*x)^(-5/2)*x/(1 - x);
ser := series(ogf, x, (n+1)*len+1); seq(coeff(ser, x, j), j=0..len) end:
A323223List(24);
# Alternative:
a := proc(n) option remember; `if`(n<2,n,((5*n+1)*a(n-1)-(4*n+2)*a(n-2))/(n-1)) end: seq(a(n), n=0..24);
A387343
Expansion of 1/(1 - 8*x + 4*x^2)^(5/2).
Original entry on oeis.org
1, 20, 270, 3080, 31990, 312984, 2937900, 26751120, 237977190, 2078447800, 17884238372, 152002796400, 1278603975740, 10660760170480, 88213513627800, 725107271106336, 5925674432448390, 48175954959638520, 389871795632108020, 3142078444590396080, 25228464363569709396
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := 1/(1 - 8*x + 4*x^2)^(5/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 28 2025
-
CoefficientList[Series[1/(1-8*x+4*x^2)^(5/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 28 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(1/(1-8*x+4*x^2)^(5/2))
Comments