cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 1062 results. Next

A066246 a(n) = 0 unless n is a composite number A002808(k) then a(n) = k.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 4, 5, 0, 6, 0, 7, 8, 9, 0, 10, 0, 11, 12, 13, 0, 14, 15, 16, 17, 18, 0, 19, 0, 20, 21, 22, 23, 24, 0, 25, 26, 27, 0, 28, 0, 29, 30, 31, 0, 32, 33, 34, 35, 36, 0, 37, 38, 39, 40, 41, 0, 42, 0, 43, 44, 45, 46, 47, 0, 48, 49, 50, 0, 51, 0, 52, 53, 54, 55, 56, 0, 57
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 09 2001

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (unfoldr, genericIndex)
    a066246 n = genericIndex a066246_list (n - 1)
    a066246_list = unfoldr x (1, 1, a002808_list) where
       x (i, z, cs'@(c:cs)) | i == c = Just (z, (i + 1, z + 1, cs))
                            | i /= c = Just (0, (i + 1, z, cs'))
    -- Reinhard Zumkeller, Jan 29 2014
  • Mathematica
    Module[{k=1},Table[If[CompositeQ[n],k;k++,0],{n,100}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 03 2019 *)
  • PARI
    a(n)=if(isprime(n),0,max(0,n-primepi(n)-1)) \\ Charles R Greathouse IV, Aug 21 2011
    

Formula

a(n) = A239968(n) + A010051(n) - 1. - Reinhard Zumkeller, Mar 30 2014
a(n) = A065855(n)*A005171(n). - Ridouane Oudra, Jul 29 2025

A377034 Antidiagonal-sums of the array A377033(n,k) = n-th term of the k-th differences of the composite numbers (A002808).

Original entry on oeis.org

4, 8, 10, 8, 14, 14, 11, 24, 10, 20, 37, -10, 56, 26, -52, 260, -659, 2393, -8128, 25703, -72318, 184486, -430901, 933125, -1888651, 3597261, -6479654, 11086964, -18096083, 28307672, -42644743, 62031050, -86466235, 110902085, -110907437, 52379, 483682985
Offset: 1

Views

Author

Gus Wiseman, Oct 17 2024

Keywords

Comments

Row-sums of the triangle version of A377033.

Examples

			The fourth antidiagonal of A377033 is (9, 1, -1, -1), so a(4) = 8.
		

Crossrefs

The version for prime instead of composite is A140119, noncomposite A376683.
This is the antidiagonal-sums of the array A377033, absolute version A377035.
For squarefree instead of composite we have A377039, absolute version A377040.
For nonsquarefree instead of composite we have A377047, absolute version A377048.
For prime-power instead of composite we have A377052, absolute version A377053.
Other arrays of differences: A095195 (prime), A376682 (noncomposite), A377033 (composite), A377038 (squarefree), A377046 (nonsquarefree), A377051 (prime-power).
A000040 lists the primes, differences A001223, second A036263.
A002808 lists the composite numbers, differences A073783, second A073445.
A008578 lists the noncomposites, differences A075526.
Cf. A018252, A065310, A065890, A333254, A376602 (zero), A376603 (nonzero), A376651 (positive), A376652 (negative), A376680, A377036.

Programs

  • Mathematica
    q=Select[Range[100],CompositeQ];
    t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[i+k]],{k,0,j}],{j,0,Length[q]/2},{i,Length[q]/2}];
    Total/@Table[t[[j,i-j+1]],{i,Length[q]/2},{j,i}]

A377037 Position of first zero in the n-th differences of the composite numbers (A002808), or 0 if it does not appear.

Original entry on oeis.org

1, 14, 2, 65, 1, 83, 2, 7, 1, 83, 2, 424, 12, 32, 11, 733, 10, 940, 9, 1110, 8, 1110, 7, 1110, 6, 1110, 112, 1110, 111, 1110, 110, 2192, 109, 13852, 108, 13852, 107, 13852, 106, 13852, 105, 17384, 104, 17384, 103, 17384, 102, 17384, 101, 27144, 552, 28012, 551
Offset: 2

Views

Author

Gus Wiseman, Oct 17 2024

Keywords

Examples

			The third differences of the composite numbers are:
  -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -2, 1, 0, 0, 1, -1, -1, ...
so a(3) = 14.
		

Crossrefs

The version for prime instead of composite is A376678.
For noncomposite numbers we have A376855.
This is the first position of 0 in row n of the array A377033.
For squarefree instead of composite we have A377042, nonsquarefree A377050.
For prime-power instead of composite we have A377055.
Other arrays of differences: A095195 (prime), A376682 (noncomposite), A377033 (composite), A377038 (squarefree), A377046 (nonsquarefree), A377051 (prime-power).
A000040 lists the primes, differences A001223, second A036263.
A002808 lists the composite numbers, differences A073783, second A073445.
A008578 lists the noncomposites, differences A075526.
A377036 gives first term of the n-th differences of the composite numbers, for primes A007442 or A030016.

Programs

  • Mathematica
    nn=10000;
    u=Table[Differences[Select[Range[nn],CompositeQ],k],{k,2,16}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    m=Table[Position[u[[k]],0][[1,1]],{k,mnrm[Union[First/@Position[u,0]]]}]

Extensions

Offset 2 from Michel Marcus, Oct 18 2024
a(17)-a(54) from Alois P. Heinz, Oct 18 2024

A376603 Points of nonzero curvature in the sequence of composite numbers (A002808).

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 13, 17, 19, 23, 24, 26, 28, 30, 31, 35, 36, 40, 42, 46, 47, 49, 51, 55, 56, 58, 59, 63, 64, 70, 71, 73, 75, 77, 79, 81, 82, 94, 95, 97, 98, 102, 104, 112, 114, 118, 119, 123, 124, 126, 127, 131, 132, 136, 138, 146, 148, 150, 152, 162, 163
Offset: 1

Views

Author

Gus Wiseman, Oct 05 2024

Keywords

Comments

These are points at which the second differences (A073445) are nonzero.

Examples

			The composite numbers (A002808) are:
  4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
  2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...
with first differences (A073445):
  0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ...
with nonzero terms at (A376603):
  2, 4, 6, 8, 10, 12, 13, 17, 19, 23, 24, 26, 28, 30, 31, 35, 36, 40, 42, 46, 47, ...
		

Crossrefs

Partitions into composite numbers are counted by A023895, factorizations A050370.
These are the positions of nonzero terms in A073445.
For first differences we had A073783, ones A375929, complement A065890.
For prime instead of composite we have A333214.
The complement is A376602.
For upward concavity (instead of nonzero) we have A376651, downward A376652.
For composite numbers: A002808 (terms), A073783 (first differences), A073445 (second differences), A376602 (zeros), A376651 (concave-up), A376652 (concave-down).
For nonzero curvature: A333214 (prime), A376589 (non-perfect-power), A376592 (squarefree), A376595 (nonsquarefree), A376598 (prime-power), A376601 (non-prime-power).

Programs

  • Mathematica
    Join@@Position[Sign[Differences[Select[Range[100],CompositeQ],2]],1|-1]

A255872 Smallest Rhonda number to base b = n-th composite number, A002808(n).

Original entry on oeis.org

10206, 855, 1836, 15540, 1568, 560, 11475, 2392, 1000, 1470, 1815, 1632, 2695, 2080, 6764, 7788, 4797, 3094, 3024, 1944, 756, 5661, 8232, 1000, 12296, 5824, 4624, 4851, 8262, 6561, 16583, 14616, 6545, 7225, 11310, 18382, 1995, 16896, 2940, 23465, 8464, 3348
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 08 2015

Keywords

Comments

See A099542 for definition of Rhonda numbers and for more links.

Examples

			.   n |  b |  a(n)              |  a(n) in base b | factorization
. ----+----+--------------------+-----------------+--------------
.   1 |  4 | 10206 = A100968(1) | [2,1,3,3,1,3,2] | 2*3^6*7
.   2 |  6 |   855 = A100969(1) |       [3,5,4,3] | 3^2*5*19
.   3 |  8 |  1836 = A100970(1) |       [3,4,5,4] | 2^2*3^3*17
.   4 |  9 | 15540 = A100973(1) |     [2,3,2,7,6] | 2^2*3*5*7*37
.   5 | 10 |  1568 = A099542(1) |       [1,5,6,8] | 2^5*7^2
.   6 | 12 |   560 = A100971(1) |        [3,10,8] | 2^4*5*7
.   7 | 14 | 11475 = A100972(1) |       [4,2,7,9] | 3^3*5^2*17
.   8 | 15 |  2392 = A100974(1) |        [10,9,7] | 2^3*13*23
.   9 | 16 |  1000 = A100975(1) |        [3,14,8] | 2^3*5^3
.  10 | 18 |  1470 = A255735(1) |        [4,9,12] | 2*3*5*7^2
.  11 | 20 |  1815 = A255732(1) |       [4,10,15] | 3*5*11^2
.  12 | 21 |  1632              |       [3,14,15] | 2^5*3*17
.  13 | 22 |  2695              |       [5,12,11] | 5*7^2*11
.  14 | 24 |  2080              |       [3,14,16] | 2^5*5*13
.  15 | 25 |  6764              |      [10,20,14] | 2^2*19*89
.  16 | 26 |  7788              |      [11,13,14] | 2^2*3*11*59
.  17 | 27 |  4797              |       [6,15,18] | 3^2*13*41
.  18 | 28 |  3094              |       [3,26,14] | 2*7*13*17
.  19 | 30 |  3024 = A255736(1) |       [3,10,24] | 2^4*3^3*7
.  20 | 32 |  1944              |       [1,28,24] | 2^3*3^5
		

Crossrefs

Programs

  • Haskell
    a255872 n = head $ filter (rhonda b) $ iterate zeroless 1 where
                -- function rhonda as defined in A099542
                zeroless x = 1 + if r < b - 1 then x else b * zeroless x'
                             where (x', r) = divMod x b
                b = a002808 n

A376651 Points of upward concavity in the sequence of composite numbers (A002808).

Original entry on oeis.org

4, 8, 12, 17, 23, 26, 30, 35, 40, 46, 49, 55, 58, 63, 70, 73, 77, 81, 94, 97, 102, 112, 118, 123, 126, 131, 136, 146, 150, 162, 173, 176, 180, 185, 195, 200, 205, 210, 216, 219, 229, 242, 245, 249, 262, 267, 276, 280, 285, 292, 297, 302, 305, 310, 317, 320
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2024

Keywords

Comments

These are points at which the second differences (A073445) are positive.
Also positions of strict ascents in the first differences (A073783) of composite numbers (A002808).

Examples

			The composite numbers are (A002808):
  4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
  2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...
with first differences (A073445):
  0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ...
with positive terms at (A376651):
  4, 8, 12, 17, 23, 26, 30, 35, 40, 46, 49, 55, 58, 63, 70, 73, 77, 81, 94, 97, ...
		

Crossrefs

The version for A000002 is A022297, negative A156242.
Partitions into composite numbers are counted by A023895, factorizations A050370.
For first differences we had A065310 or A073783, ones A375929.
These are the positions of positive terms in A073445, negative A376652.
For prime instead of composite we have A258025, negative A258026.
For zero second differences (instead of positive) we have A376602.
For composite numbers: A002808 (terms), A073783 (first differences), A073445 (second differences), A376602 (inflections and undulations), A376603 (nonzero curvature), A376652 (concave-down).

Programs

  • Mathematica
    Join@@Position[Sign[Differences[Select[Range[1000],CompositeQ],2]],1]

A376652 Points of downward concavity in the sequence of composite numbers (A002808).

Original entry on oeis.org

2, 6, 10, 13, 19, 24, 28, 31, 36, 42, 47, 51, 56, 59, 64, 71, 75, 79, 82, 95, 98, 104, 114, 119, 124, 127, 132, 138, 148, 152, 163, 174, 178, 181, 187, 196, 201, 206, 212, 217, 221, 230, 243, 247, 250, 263, 268, 278, 281, 286, 293, 298, 303, 306, 311, 318, 321
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2024

Keywords

Comments

These are points at which the second differences (A073445) are negative.
Also positions of strict descents in the first differences (A073783) of composite numbers (A002808).

Examples

			The composite numbers are (A002808):
  4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
  2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...
with second differences (A073445):
  0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ...
with negative terms at (A376651):
  2, 6, 10, 13, 19, 24, 28, 31, 36, 42, 47, 51, 56, 59, 64, 71, 75, 79, 82, 95, 98, ...
		

Crossrefs

The version for A000002 is A156242, positive A022297.
Partitions into composite numbers are counted by A023895, factorizations A050370.
For first differences we had A065310 or A073783, ones A375929.
These are the positions of negative terms in A073445, positive A376651.
For prime instead of composite we have A258026, positive A258025.
For zero second differences instead of negative we have A376602.
For composite numbers: A002808 (terms), A073783 (first differences), A073445 (second differences), A376602 (inflections and undulations), A376603 (nonzero curvature), A376651 (concave-up).

Programs

  • Maple
    Comps:= remove(isprime, [seq(i,i=4..1000)]):
    D1:= Comps[2..-1]-Comps[1..-2]:
    D2:= D1[2..-1]-D1[1..-2]:
    select(t -> D2[t] < 0, [$1..nops(D2)]); # Robert Israel, Nov 06 2024
  • Mathematica
    Join@@Position[Sign[Differences[Select[Range[1000],CompositeQ],2]],-1]

A050435 a(n) = composite(composite(n)), where composite = A002808, composite numbers.

Original entry on oeis.org

9, 12, 15, 16, 18, 21, 24, 25, 26, 28, 32, 33, 34, 36, 38, 39, 40, 42, 45, 48, 49, 50, 51, 52, 55, 56, 57, 60, 63, 64, 65, 68, 69, 70, 72, 74, 76, 77, 78, 80, 81, 84, 86, 87, 88, 90, 91, 93, 94, 95, 98, 100, 102, 104, 105, 106, 110, 111, 112, 115, 116, 117, 118, 119
Offset: 1

Views

Author

Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999

Keywords

Comments

Second-order composite numbers.
Composites (A002808) with composite (A002808) subscripts. a(n) U A022449(n) = A002808(n). Subsequence of A175251 (composites (A002808) with nonprime (A018252) subscripts), a(n) = A175251(n+1) for n >= 1. - Jaroslav Krizek, Mar 14 2010

Examples

			The 2nd composite number is 6 and the 6th composite number is 12, so a(2) = 12. a(100) = A002808(A002808(100)) = A002808(133) = 174.
		

Crossrefs

Programs

  • Haskell
    a050435 = a002808 . a002808
    a050435_list = map a002808 a002808_list
    -- Reinhard Zumkeller, Jan 12 2013
    
  • Mathematica
    Select[ Range[ 6, 150 ], ! PrimeQ[ # ] && ! PrimeQ[ # - PrimePi[ # ] - 1 ] & ]
    With[{cmps=Select[Range[200],CompositeQ]},Table[cmps[[cmps[[n]]]],{n,70}]] (* Harvey P. Dale, Feb 18 2018 *)
  • PARI
    composite(n)=my(k=-1); while(-n + n += -k + k=primepi(n), ); n \\ M. F. Hasler
    a(n)=composite(composite(n)) \\ Charles R Greathouse IV, Jun 25 2017
    
  • Python
    from sympy import composite
    def a(n): return composite(composite(n))
    print([a(n) for n in range(1, 65)]) # Michael S. Branicky, Sep 12 2021

Formula

Let C(n) be the n-th composite number, with C(1)=4. Then these are numbers C(C(n)).
a(n) = n + 2n/log n + O(n/log^2 n). - Charles R Greathouse IV, Jun 25 2017

Extensions

More terms from Robert G. Wilson v, Dec 20 2000

A377035 Antidiagonal-sums of the absolute value of the array A377033(n,k) = n-th term of the k-th differences of the composite numbers (A002808).

Original entry on oeis.org

4, 8, 10, 12, 14, 18, 21, 28, 34, 40, 47, 74, 96, 110, 138, 286, 715, 2393, 8200, 25731, 72468, 184716, 431575, 934511, 1892267, 3605315, 6494464, 11116110, 18134549, 28348908, 42701927, 62290660, 88313069, 120999433, 159769475, 221775851, 483797879
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2024

Keywords

Examples

			The fourth antidiagonal of A377033 is (9, 1, -1, -1), so a(4) = 12.
		

Crossrefs

The version for prime instead of composite is A376681, absolute version of A140119.
The version for noncomposite is A376684, absolute version of A376683.
This is the antidiagonal-sums of absolute value of the array A377033.
For squarefree instead of composite we have A377040, absolute version of A377039.
For nonsquarefree instead of composite we have A377048, absolute version of A377047.
For prime-power instead of composite we have A377053, absolute version of A377052.
Other arrays of differences: A095195 (prime), A376682 (noncomposite), A377033 (composite), A377038 (squarefree), A377046 (nonsquarefree), A377051 (prime-power).
A000040 lists the primes, differences A001223, seconds A036263.
A002808 lists the composite numbers, differences A073783, seconds A073445.
A008578 lists the noncomposites, differences A075526.
Cf. A018252, A065310, A065890, A333254, A376602 (zero), A376603 (nonzero), A376651 (positive), A376652 (negative), A376680, A377036.

Programs

  • Mathematica
    q=Select[Range[120],CompositeQ];
    t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[i+k]],{k,0,j}],{j,0,Length[q]/2},{i,Length[q]/2}];
    Total/@Table[Abs[t[[j,i-j+1]]],{i,Length[q]/2},{j,i}]

A054546 First differences of nonprimes (including 0 and 1, A002808).

Original entry on oeis.org

1, 3, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2
Offset: 1

Views

Author

G. L. Honaker, Jr., Apr 09 2000

Keywords

Comments

Sum of first n terms equals n-th nonprime number.
First differences of A141468. - Omar E. Pol, Oct 21 2011

Crossrefs

Programs

  • Mathematica
    t=Flatten[Position[Table[PrimeQ[w], {w, 2, 256}], False]]+1 Delete[t-RotateRight[t], 1]
    Differences[Select[Range[0,200],!PrimeQ[#]&]] (* Harvey P. Dale, May 27 2018 *)

Formula

a(n) = A018252(n) - A141468(n). - Omar E. Pol, Oct 21 2011

Extensions

More terms from James Sellers, Apr 11 2000
Previous Showing 11-20 of 1062 results. Next