cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 88 results. Next

A169711 The function W_n(6) (see Borwein et al. reference for definition).

Original entry on oeis.org

1, 20, 93, 256, 545, 996, 1645, 2528, 3681, 5140, 6941, 9120, 11713, 14756, 18285, 22336, 26945, 32148, 37981, 44480, 51681, 59620, 68333, 77856, 88225, 99476, 111645, 124768, 138881, 154020, 170221, 187520, 205953, 225556, 246365, 268416, 291745, 316388
Offset: 1

Views

Author

N. J. A. Sloane, Apr 17 2010

Keywords

Crossrefs

The sequence in Table 1 of the Borwein et al. reference are A000384, A109711-A109713; A000984, A002893, A002895, A169714, A169715.
Column 3 of A287316.
Cf. A287314.

Programs

  • Magma
    [6*n^3-9*n^2+4*n: n in [1..40]]; // Vincenzo Librandi, May 28 2017
    
  • Maple
    A169711 := proc(n)
            W(n,6) ;
    end proc:
    seq(A169711(n),n=1..20) ; # uses W from A169715; R. J. Mathar, Mar 28 2012
    a := n -> 6*n^3 - 9*n^2 + 4*n: seq(a(n), n=1..33); # Peter Luschny, May 27 2017
  • Mathematica
    CoefficientList[Series[(1 + 16 x + 19 x^2) / (1 - x)^4, {x, 0, 50}], x] (* or *) Table[6 n^3 - 9 n^2 + 4 n, {n, 1, 40}] (* Vincenzo Librandi, May 28 2017 *)
    LinearRecurrence[{4,-6,4,-1},{1,20,93,256},40] (* Harvey P. Dale, Feb 27 2023 *)
  • PARI
    a(n)=6*n^3-9*n^2+4*n \\ Charles R Greathouse IV, Oct 18 2022

Formula

a(n) = 6*n^3 - 9*n^2 + 4*n. - Peter Luschny, May 27 2017
G.f.: x*(1+16*x+19*x^2)/(1-x)^4. - Vincenzo Librandi, May 28 2017
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, May 28 2017

A248586 a(n) = Sum_{i=0..n} C(n,i)*C(2i,i)^2.

Original entry on oeis.org

1, 5, 45, 521, 6733, 92385, 1316865, 19274925, 287694285, 4359037985, 66837293545, 1034774126325, 16149186405025, 253737607849445, 4009771017244485, 63681603585696321, 1015763347140335565, 16264070907887454465
Offset: 0

Views

Author

R. J. Mathar, Oct 09 2014

Keywords

Crossrefs

Cf. A002894 (inverse binomial transform), A002893.

Programs

  • Mathematica
    Table[Sum[Binomial[n, k] Binomial[2k, k]^2, {k, 0, n}],{n,0,100}] (* Emanuele Munarini, Oct 28 2016 *)
  • Maxima
    makelist(sum(binomial(n,k)*binomial(2*k,k)^2,k,0,n),n,0,12); /* Emanuele Munarini, Oct 28 2016 */
  • PARI
    a(n) = sum(i=0, n, binomial(n,i)*binomial(2*i,i)^2); \\ Michel Marcus, Oct 09 2014
    

Formula

a(n) = Sum_{i=0..n} A007318(n,i)*A002894(i).
Conjecture: n^2*a(n) +(-19*n^2+19*n-5)*a(n-1) +35*(n-1)^2*a(n-2) -17*(n-1)*(n-2)*a(n-3)=0.
G.f.: LegendreP(-1/2, (1+15x)/(1-17x)) /[sqrt(1-17x)*sqrt(1-x)]. [Corrected by Robert Israel, Oct 28 2016]
From Emanuele Munarini, Oct 28 2016: (Start)
a(n) = hypergeometric(1/2,1/2,-n;1,1;-16).
G.f.: A(t) = (2/Pi)*(ellipticK(16*t/(1-t))/(1-t)).
Diff. eq. satisfied by the g.f.: t*(1-t)*(1-18*t+17*t^2)*A''(t)+(1-t)*(1-37*t+68*t^2)*A'(t)-(34*t^2-35*t+5)*A(t)=0.
Remark: the conjectured recurrence for the coefficients a(n) comes from this diff. eq. for A(t).
(End)
a(n) ~ 17^(n+1)/(16*Pi*n). - Vaclav Kotesovec, Oct 30 2016

A336270 a(n) = Sum_{k=0..n} Sum_{j=0..k} (binomial(n,k) * binomial(k,j))^n.

Original entry on oeis.org

1, 3, 15, 381, 67635, 83118753, 813824623689, 58040410068847251, 32150480245981639533315, 154935057570894645075940703673, 5474671509704049919709361235659936825, 1600436120524545216094358662984789029130593831
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 15 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(Binomial[n, k] Binomial[k, j])^n, {j, 0, k}], {k, 0, n}], {n, 0, 11}]
    Table[(n!)^n SeriesCoefficient[Sum[x^k/(k!)^n, {k, 0, n}]^3, {x, 0, n}], {n, 0, 11}]
  • PARI
    a(n) = sum(k=0, n, sum(j=0, k, (binomial(n,k) * binomial(k,j))^n)); \\ Michel Marcus, Jul 16 2020

Formula

a(n) = (n!)^n * [x^n] (Sum_{k>=0} x^k / (k!)^n)^3.

A336271 a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(n,k)^2 * binomial(2*k,k) * a(n-k).

Original entry on oeis.org

1, 2, 10, 92, 1354, 29252, 873964, 34555880, 1748176714, 110183215988, 8467704986260, 779536758060920, 84699429189141100, 10725613123706081720, 1565870044943751242440, 261092436660169105108592, 49312362996510562406915914, 10473104312824253527997052500
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 15 2020

Keywords

Crossrefs

Column k=2 of A340986.

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k]^2 Binomial[2 k, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]
    nmax = 17; CoefficientList[Series[1/BesselJ[0, 2 Sqrt[x]]^2, {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = 1 / BesselJ(0,2*sqrt(x))^2.
a(n) ~ (n!)^2 * n / (BesselJ(1, 2*sqrt(r))^2 * r^(n+1)), where r = BesselJZero(0,1)^2 / 4 = A115368^2/4 = 1.4457964907366961302939989396139517587... - Vaclav Kotesovec, Jul 15 2020

A172434 G.f.: Sum_{n>=0} a(n)*x^n/n!^4 = [ Sum_{n>=0} x^n/n!^4 ]^3.

Original entry on oeis.org

1, 3, 51, 1785, 67635, 2973753, 146591529, 7735733883, 430208938035, 24954576411225, 1496639801457801, 92241539987122683, 5816057121183700521, 373854785336483200155, 24431647104881328618315, 1619654401178752389082785
Offset: 0

Views

Author

Paul D. Hanna, Jan 20 2011

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 51*x^2/2!^4 + 1785*x^3/3!^4 + 67635*x^4/4!^4 +...
A(x)^(1/3) = 1 + x + x^2/2!^4 + x^3/3!^4 + x^4/4!^4 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n<0, 0, n!^4*polcoeff(sum(m=0, n, x^m/m!^4+x*O(x^n))^3, n))}
    
  • PARI
    {a(n)=sum(k=0, n, binomial(n, k)^4*sum(j=0, k, binomial(k, j)^4))}

Formula

a(n) = Sum_{k=0..n} C(n,k)^4 * Sum_{j=0..k} C(k,j)^4 = Sum_{k=0..n} C(n,k)^4 * A005260(k).

A180350 G.f.: Sum_{n>=0} a(n)*x^n/n!^5 = [ Sum_{n>=0} x^n/n!^5 ]^3.

Original entry on oeis.org

1, 3, 99, 9237, 775971, 83118753, 10657602909, 1463886204147, 215566192274211, 33677584957306713, 5492032622227428849, 928229455634614797447, 161727023896151286167901, 28905146810167510775300463
Offset: 0

Views

Author

Paul D. Hanna, Jan 20 2011

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 99*x^2/2!^5 + 9237*x^3/3!^5 + 775971*x^4/4!^5 +...
A(x)^(1/3) = 1 + x + x^2/2!^5 + x^3/3!^5 + x^4/4!^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n<0, 0, n!^5*polcoeff(sum(m=0, n, x^m/m!^5+x*O(x^n))^3, n))}
    
  • PARI
    {a(n)=sum(k=0, n, binomial(n, k)^5*sum(j=0, k, binomial(k, j)^5))}

Formula

a(n) = Sum_{k=0..n} C(n,k)^5 * Sum_{j=0..k} C(k,j)^5 = Sum_{k=0..n} C(n,k)^5 * A005261(k).

A186377 a(n) equals the least sum of the squares of the coefficients in (1 + 2*x^k + x^p + x^q)^n found at sufficiently large p and q>(n+1)p for some fixed k>0.

Original entry on oeis.org

1, 7, 79, 1129, 18559, 333577, 6365089, 126652183, 2598628543, 54577439833, 1167481074529, 25346459683783, 557042221952881, 12368307313680871, 277027947337574911, 6251808554314780009, 142015508983550880703
Offset: 0

Views

Author

Paul D. Hanna, Feb 19 2011

Keywords

Comments

Equivalently, a(n) equals the sum of the squares of the coefficients in any one of the following polynomials:
. (2 + x^k + x^p + x^q)^n, or
. (1 + x^k + 2*x^p + x^q)^n, or
. (1 + x^k + x^p + 2*x^q)^n,
for all p>(n+1)k and q>(n+1)p and fixed k>0.

Examples

			G.f.: A(x) = 1 + 7*x + 79*x^2/2!^2 + 1129*x^3/3!^2 + 18559*x^4/4!^2 +...
The g.f. may be expressed as:
A(x) = [Sum_{n>=0} x^n/n!^2]^3 *[Sum_{n>=0} (4x)^n/n!^2] where
[Sum_{n>=0} x^n/n!^2]^3 = 1 + 3*x + 15*x^2/2!^2 + 93*x^3/3!^2 + 639*x^4/4!^2 + 4653*x^5/5!^2 +...+ A002893(n)*x^n/n!^2 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]^2 * 4^(n-k) *Sum[Binomial[k,j]^2 * Binomial[2j,j], {j,0,k}], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Feb 11 2015 *)
  • PARI
    {a(n)=local(V=Vec((1+2*x+x^(n+2)+x^(n^2+2*n+3))^n));V*V~}
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)^2*4^(n-k)*sum(j=0,k,binomial(k,j)^2*binomial(2*j,j)))}
    
  • PARI
    {a(n)=n!^2*polcoeff(sum(m=0,n,x^m/m!^2)^3*sum(m=0,n,(2^2*x)^m/m!^2),n)}

Formula

(1) a(n) = Sum_{k=0..n} C(n,k)^2 *4^(n-k) *Sum_{j=0..k} C(k,j)^2*C(2j,j).
Let g.f. A(x) = Sum_{n>=0} a(n)*x^n/n!^2, then
(2) A(x) = B(x)^3 * B(2^2*x)
where B(x) = Sum_{n>=0} x^n/n!^2 = BesselI(0, 2*sqrt(x)).
Recurrence: (n-1)*n^3*(3*n - 5)*a(n) = 2*(n-1)*(54*n^4 - 174*n^3 + 192*n^2 - 99*n + 20)*a(n-1) - 2*(441*n^5 - 2604*n^4 + 6102*n^3 - 7107*n^2 + 4111*n - 940)*a(n-2) + 2*(n-2)^2*(726*n^3 - 3076*n^2 + 4188*n - 1655)*a(n-3) - 225*(n-3)^2*(n-2)^2*(3*n - 2)*a(n-4). - Vaclav Kotesovec, Feb 12 2015
a(n) ~ 5^(2*n+2) / (2^(7/2) * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Feb 12 2015

A336638 Sum_{n>=0} a(n) * x^n / (n!)^2 = 1 / BesselJ(0,2*sqrt(x))^3.

Original entry on oeis.org

1, 3, 21, 255, 4725, 123903, 4368729, 199467243, 11455187445, 808475761695, 68805857523321, 6950458374996843, 822292004658568761, 112639503374757412875, 17688916392275574761805, 3157133540377493872350855, 635546443798928578953138165
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 28 2020

Keywords

Crossrefs

Column k=3 of A340986.

Programs

  • Mathematica
    nmax = 16; CoefficientList[Series[1/BesselJ[0, 2 Sqrt[x]]^3, {x, 0, nmax}], x] Range[0, nmax]!^2
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k]^2 HypergeometricPFQ[{1/2, -k, -k}, {1, 1}, 4] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 16}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(n,k)^2 * A002893(k) * a(n-k).
a(n) ~ n!^2 * n^2 / (2 * r^(n + 3/2) * BesselJ(1, 2*sqrt(r))^3), where r = BesselJZero(0,1)^2 / 4 = A115368^2/4 = 1.4457964907366961302939989396139517587... - Vaclav Kotesovec, Jul 11 2025

A208426 Expansion of Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-3*x)^(3*n+1).

Original entry on oeis.org

1, 3, 15, 99, 711, 5373, 42099, 338355, 2771127, 23028813, 193610385, 1643215005, 14056350075, 121040308665, 1048212778635, 9122168556819, 79727173530327, 699443806767525, 6156776010386481, 54356715121718349, 481194980656865721, 4270165015550478003
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2012

Keywords

Comments

Compare g.f. to: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-2*x)^(3*n+1), which is a g.f. of the Franel numbers (A000172).
Diagonal of rational functions 1/(1 - x*y - y*z - x*z - 3*x*y*z), 1/(1 - x*y + y*z + x*z - 3*x*y*z). - Gheorghe Coserea, Jul 04 2018
Diagonal of the rational function 1/(1 - (x^2 + y^2 + z^2 + 3*x*y*z)). - Seiichi Manyama, Jul 05 2025

Examples

			G.f.: A(x) = 1 + 3*x + 15*x^2 + 99*x^3 + 711*x^4 + 5373*x^5 + 42099*x^6 + ...
where
A(x) = 1/(1-3*x) + 6*x^2/(1-3*x)^4 + 90*x^4/(1-3*x)^7 + 1680*x^6/(1-3*x)^10 + 34650*x^8/(1-3*x)^13 + 756756*x^10/(1-3*x)^16 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[3^n * HypergeometricPFQ[{1/2 - n/2, -n/2, 1 + n}, {1, 1}, 4/9], {n, 0, 25}] (* Vaclav Kotesovec, Oct 07 2020 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3*x^(2*m)/(1-3*x+x*O(x^n))^(3*m+1)),n)}
    for(n=0,31,print1(a(n),", "))
    
  • PARI
    a(n) = sum(k=0, n\2, (n+k)!/(k!^3*(n-2*k)!) * 3^(n-2*k)); \\ Gheorghe Coserea, Jul 04 2018

Formula

From Gheorghe Coserea, Jul 04 2018: (Start)
a(n) = Sum_{k=0..floor(n/2)} (n+k)!/(k!^3*(n-2*k)!) * 3^(n-2*k).
G.f. y=A(x) satisfies: 0 = x*(3*x + 2)*(27*x^3 + 9*x - 1)*y'' + (243*x^4 + 216*x^3 + 27*x^2 + 36*x - 2)*y' + 3*(27*x^3 + 33*x^2 - 2*x + 2)*y.
(End)
From Vaclav Kotesovec, Oct 07 2020: (Start)
Recurrence: n^2*(3*n - 5)*a(n) = 3*(9*n^3 - 24*n^2 + 17*n - 4)*a(n-1) + 3*(3*n - 4)*a(n-2) + 27*(n-2)^2*(3*n - 2)*a(n-3).
a(n) ~ sqrt(2 + sqrt(5)*phi^(-1/3) + sqrt(5)*phi^(1/3)) * 3^n * (1 + phi^(-2/3) + phi^(2/3))^n / (2*Pi*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
(End)

A336293 a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(2*k,k) * (n-k)!.

Original entry on oeis.org

1, 3, 16, 116, 1038, 10922, 131256, 1766592, 26253702, 426173906, 7492270416, 141661870088, 2864168171596, 61621248390756, 1404853103594128, 33815954626749600, 856680253728250950, 22777071459869216850, 633968368216974945600, 18430976777427663053400
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 16 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]^2 Binomial[2 k, k] (n - k)!, {k, 0, n}], {n, 0, 19}]
    Table[n! HypergeometricPFQ[{1/2, -n}, {1, 1}, -4], {n, 0, 19}]
    nmax = 19; CoefficientList[Series[Exp[x] BesselI[0, 2 Sqrt[x]]^2, {x, 0, nmax}], x] Range[0, nmax]!^2
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)^2 * binomial(2*k,k) * (n-k)!); \\ Michel Marcus, Jul 17 2020

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * BesselI(0,2*sqrt(x))^2.
a(n) ~ n^n * exp(4*sqrt(n) - n - 2) / sqrt(8*Pi) * (1 + 55/(24*sqrt(n))). - Vaclav Kotesovec, Aug 04 2022
Recurrence: n*a(n) = (3*n^2 + n - 1)*a(n-1) - (n-1)^2*(3*n + 1)*a(n-2) + (n-2)^2*(n-1)^2*a(n-3). - Vaclav Kotesovec, Aug 04 2022
Previous Showing 61-70 of 88 results. Next