cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 111 results. Next

A035093 Smallest k such that k*n! + 1 is prime.

Original entry on oeis.org

1, 1, 1, 3, 2, 3, 3, 4, 3, 3, 1, 2, 3, 13, 7, 4, 5, 2, 7, 17, 15, 18, 3, 6, 3, 16, 1, 4, 7, 20, 8, 3, 9, 5, 2, 7, 1, 3, 10, 3, 1, 29, 7, 9, 45, 8, 3, 6, 35, 66, 2, 20, 2, 4, 25, 52, 14, 34, 24, 6, 10, 22, 38, 16, 20, 91, 69, 12, 19, 20, 21, 42, 1, 5, 33, 77, 1, 2, 12, 29, 193, 74, 40, 55, 19
Offset: 1

Views

Author

Keywords

Comments

This is one possible generalization of "the least prime problem" for n*k+1 arithmetic progression when n is replaced by n!, a special difference.

Examples

			a(7)=3 because in progression of 5040*k+1 the terms 5041 and 10081 are not prime and so 15121 is the first prime.
		

Crossrefs

Analogous case is A034693. Special case for k=1 is A002981.

Programs

  • Mathematica
    Table[k = 1; While[! PrimeQ[1 + k*n!], k++]; k, {n, 85}] (* T. D. Noe, Nov 04 2013 *)
  • PARI
    a(n) = my(k=1); while(!isprime(k*n!+1), k++); k; \\ Michel Marcus, Sep 26 2020

Extensions

a(80) corrected by Alex Ratushnyak, Nov 03 2013
Simpler title by Sean A. Irvine, Sep 25 2020

A076683 Numbers k such that 7*k! + 1 is prime.

Original entry on oeis.org

3, 7, 8, 15, 19, 29, 36, 43, 51, 158, 160, 203, 432, 909, 1235, 3209, 8715, 9707
Offset: 1

Views

Author

Phillip L. Poplin (plpoplin(AT)bellsouth.net), Oct 25 2002

Keywords

Comments

a(17) > 5830. - Jinyuan Wang, Feb 05 2020
a(19) > 12000. - Michael S. Branicky, Jul 04 2024

Examples

			k = 3 is here because 7*3! + 1 = 43 is prime.
		

Crossrefs

Programs

  • PARI
    is(k) = ispseudoprime(7*k!+1); \\ Jinyuan Wang, Feb 05 2020
    
  • Python
    from sympy import isprime
    from math import factorial
    def aupto(m): return [k for k in range(m+1) if isprime(7*factorial(k)+1)]
    print(aupto(300)) # Michael S. Branicky, Mar 07 2021

Extensions

a(17)-a(18) from Michael S. Branicky, Jul 04 2024

A178488 Numbers k such that 8*k! + 1 is prime.

Original entry on oeis.org

2, 4, 9, 10, 11, 12, 15, 25, 31, 46, 53, 78, 318, 615, 955, 1646, 2669, 2672, 3515, 7689
Offset: 1

Views

Author

Robert G. Wilson v, Sep 13 2010 and M. F. Hasler, Sep 16 2010

Keywords

Comments

a(20) > 3810. - Jinyuan Wang, Feb 05 2020
a(21) > 12000. - Michael S. Branicky, Jul 03 2024

Crossrefs

Programs

  • Mathematica
    fQ[n_] := PrimeQ[8 n! + 1]; k = 0; lst = {}; While[k < 1501, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst
  • PARI
    for(k=1, 999, ispseudoprime(8*k!+1) & print1(k, ", "))
    
  • PFGW
    ABC2 8*$a!+1
    a: from 1 to 1000 // Jinyuan Wang, Feb 05 2020

Extensions

a(16)-a(19) from Jinyuan Wang, Feb 05 2020
a(20) from Michael S. Branicky, Jul 02 2024

A180626 Numbers k such that 9*k! + 1 is prime.

Original entry on oeis.org

2, 6, 7, 10, 13, 15, 24, 29, 33, 44, 98, 300, 548, 942, 1099, 1176, 1632, 1794, 3676, 3768, 4804, 6499, 8049, 8164, 8917, 10270, 11610, 11959
Offset: 1

Views

Author

Robert G. Wilson v, Sep 13 2010

Keywords

Comments

Tested to 4500. - Robert G. Wilson v, Sep 28 2010
a(22) > 5235. - Jinyuan Wang, Feb 05 2020

Crossrefs

Programs

  • Mathematica
    fQ[n_] := PrimeQ[9 n! + 1]; k = 0; lst = {}; While[k < 1501, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst
  • PARI
    is(k) = ispseudoprime(9*k!+1); \\ Jinyuan Wang, Feb 05 2020

Extensions

a(17)-a(20) from Robert G. Wilson v, Sep 28 2010
a(21) from Jinyuan Wang, Feb 05 2020
a(22) from Michael S. Branicky, May 27 2023
a(23)-a(28) from Michael S. Branicky, Jul 12 2024

A204659 Numbers n such that n!9-1 is prime.

Original entry on oeis.org

3, 4, 6, 8, 15, 20, 23, 27, 30, 44, 51, 62, 80, 90, 95, 114, 129, 138, 150, 152, 156, 182, 201, 216, 293, 332, 342, 393, 411, 414, 419, 525, 668, 743, 800, 972, 1034, 1266, 1785, 1869, 2777, 3561, 3780, 4106, 4328, 4428, 4556, 4574, 4629, 5001, 5397, 6315
Offset: 1

Views

Author

M. F. Hasler, Jan 17 2012

Keywords

Comments

n!9 = A114806(n).
a(74) > 50000. - Robert Price, Jun 14 2012
a(1)-a(73) are proved prime by the deterministic test of pfgw. - Robert Price, Jun 14 2012

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[1000], PrimeQ[MultiFactorial[#, 9] - 1] & ] (* Robert Price, Apr 19 2019 *)
  • PARI
    for(n=0,9999,isprime(prod(i=0,(n-2)\9,n-9*i)-1)& print1(n","))

Extensions

a(47)-a(73) from Robert Price, Jun 14 2012
Extended b-file adding a(74)-a(81) using data from Ken Davis link by Robert Price, Apr 19 2019

A204660 Numbers n such that n!9+1 is prime.

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 24, 25, 32, 40, 43, 48, 49, 50, 57, 60, 71, 73, 82, 83, 86, 97, 105, 114, 121, 142, 147, 159, 168, 195, 205, 210, 212, 233, 262, 288, 289, 300, 309, 316, 323, 356, 403, 447, 505, 514, 553, 735, 739, 777
Offset: 1

Views

Author

M. F. Hasler, Jan 17 2012

Keywords

Comments

n!9 = A114806(n).
a(107) > 50000. - Robert Price, Jun 18 2012
a(1)-a(106) verified prime by deterministic test of PFGW. - Robert Price, Jun 18 2012

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 1000], PrimeQ[MultiFactorial[#, 9] + 1] & ] (* Robert Price, Apr 19 2019 *)
    Select[Range[0,800],PrimeQ[Times@@Range[#,1,-9]+1]&] (* Harvey P. Dale, Aug 19 2021 *)
  • PARI
    for(n=0,9999,isprime(prod(i=0,(n-2)\9,n-9*i)+1)& print1(n","))

A055487 Least m such that phi(m) = n!.

Original entry on oeis.org

1, 3, 7, 35, 143, 779, 5183, 40723, 364087, 3632617, 39916801, 479045521, 6227180929, 87178882081, 1307676655073, 20922799053799, 355687465815361, 6402373865831809, 121645101106397521, 2432902011297772771, 51090942186005065121, 1124000727844660550281, 25852016739206547966721, 620448401734814833377121, 15511210043338862873694721, 403291461126645799820077057, 10888869450418352160768000001, 304888344611714964835479763201
Offset: 1

Views

Author

Labos Elemer, Jun 28 2000

Keywords

Comments

Erdős believed (see Guy reference) that phi(x) = n! is solvable.
Factorial primes of the form p = A002981(m)! + 1 = k! + 1 give the smallest solutions for some m (like m = 1,2,3,11) as follows: phi(p) = p-1 = A002981(m)!.
According to Tattersall, in 1950 H. Gupta showed that phi(x) = n! is always solvable. - Joseph L. Pe, Oct 01 2002
A123476(n) is a solution to the equation phi(x)=n!. - T. D. Noe, Sep 27 2006
From M. F. Hasler, Oct 04 2009: (Start)
Conjecture: Unless n!+1 is prime (i.e., n in A002981), a(n)=pq where p is the least prime > sqrt(n!) such that (p-1) | n! and q=n!/(p-1)+1 is prime.
Probably "least prime > sqrt(n!)" can also be replaced by "largest prime <= ceiling(sqrt(n!))". The case "= ceiling(...)" occurs for n=5, sqrt(120) = 10.95..., p=11, q=13.
a(n) is the first element in row n of the table A165773, which lists all solutions to phi(x)=n!. Thus a(n) = A165773((Sum_{kA055506(k)) + 1). The last element of each row (i.e., the largest solution to phi(x)=n!) is given in A165774. (End)

References

  • R. K. Guy, (1981): Unsolved problems In Number Theory, Springer - page 53.
  • Tattersall, J., "Elementary Number Theory in Nine Chapters", Cambridge University Press, 2001, p. 162.

Crossrefs

Programs

  • Mathematica
    Array[Block[{k = 1}, While[EulerPhi[k] != #, k++]; k] &[#!] &, 10] (* Michael De Vlieger, Jul 12 2018 *)

Formula

a(n) = Min{m : phi(m) = n!} = Min{m : A000010(m) = A000142(n)}.

Extensions

More terms from Don Reble, Nov 05 2001
a(21)-a(28) from Max Alekseyev, Jul 09 2014

A064145 a(n) = tau(n!-1) or number of divisors of n!-1.

Original entry on oeis.org

1, 2, 2, 4, 2, 2, 4, 6, 4, 16, 2, 4, 2, 24, 4, 8, 8, 8, 4, 16, 8, 4, 4, 8, 4, 4, 16, 32, 2, 8, 2, 2, 4, 8, 4, 32, 2, 16, 4, 16, 16, 128, 16, 32, 32, 4, 16, 8, 4, 32, 32, 16, 64, 64, 32, 64, 32, 4, 8, 16, 16, 32, 16, 64, 16, 128, 4, 64, 32, 32, 8, 16, 32, 128, 8
Offset: 2

Views

Author

Vladeta Jovovic, Sep 11 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Do[ Print[ DivisorSigma[0, n! - 1]], {n, 2, 40} ]
    DivisorSigma[0,Range[2,80]!-1] (* Harvey P. Dale, Aug 17 2024 *)
  • PARI
    { f=1; for (n=2, 100, f*=n; if (n>1, a=numdiv(f - 1), a=0); write("b064145.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 09 2009

Extensions

More terms from Robert G. Wilson v, Oct 04 2001
a(51)-a(76) from Harry J. Smith, Sep 09 2009
Ambiguous term a(1) removed by Max Alekseyev, May 06 2022

A076682 Numbers k such that 6*k! + 1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 7, 8, 9, 12, 13, 18, 24, 38, 48, 60, 113, 196, 210, 391, 681, 739, 778, 1653, 1778, 1796, 1820, 2391, 2505, 4595, 8937
Offset: 1

Views

Author

Phillip L. Poplin (plpoplin(AT)bellsouth.net), Oct 25 2002

Keywords

Comments

a(29) > 5800. - Jinyuan Wang, Feb 05 2020
a(30) > 12000. - Michael S. Branicky, Jul 04 2024

Examples

			k = 3 is here because 6*3! + 1 = 37 is prime.
		

Crossrefs

Programs

  • PARI
    is(k) = ispseudoprime(6*k!+1); \\ Jinyuan Wang, Feb 05 2020

Extensions

a(26) inserted by and a(29) from Michael S. Branicky, Jul 03 2024

A125162 a(n) is the number of primes of the form k! + n, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 4, 0, 1, 1, 5, 1, 3, 0, 1, 1, 6, 1, 7, 0, 1, 1, 6, 0, 1, 0, 1, 1, 6, 1, 9, 0, 0, 0, 3, 1, 11, 0, 1, 1, 9, 1, 5, 0, 1, 1, 10, 0, 2, 0, 1, 1, 9, 0, 2, 0, 1, 1, 10, 1, 9, 0, 0, 0, 3, 1, 9, 0, 1, 1, 8, 1, 9, 0, 0, 0, 5, 1, 9, 0, 1, 1, 11, 0, 1, 0, 1, 1, 8, 0, 3, 0, 0, 0, 2, 1, 10, 0, 1, 1, 10, 1
Offset: 1

Views

Author

Alexander Adamchuk, Nov 21 2006

Keywords

Comments

Note the triples of consecutive zeros in a(n) for n = {{32,33,34}, {62,63,64}, {74,75,76}, {92,93,94}, {116,117,118}, {122,123,124}, {140,141,142}, {152,153,154}, {158,159,160}, {182,183,184}, {200,201,202}, {206,207,208}, {212,213,214}, {218,219,220}, {242,243,244}, {272,273,274}, {284,285,286}, ...}. The middle index of most zero triples is a multiple of 3. See A125164.
The first consecutive quintuple of zeros has indices n = {294,295,296,297,298}, where the odd zero index n = 295 is not a multiple of 3.
Also for n >= 2, a(n) is the number of primes of the form k! + n for all k, since n divides k! + n for k >= n. Note that it is not known whether there are infinitely many primes of the form k! + 1; see A088332 for such primes and A002981 for the indices k. - Jianing Song, Jul 28 2018

Examples

			a(n) is the length of n-th row in the table of numbers k such that k! + n is a prime, 1 <= k <= n.
   n:  numbers k
   -------------
   1:  {1},
   2:  {1},
   3:  {2},
   4:  {1},
   5:  {2, 3, 4},
Thus a(1)-a(4) = 1, a(5) = 3.
See Example table link for more rows.
		

Crossrefs

Cf. A125163 (indices of 0), A125164 (triples).

Programs

  • Mathematica
    Table[Length[Select[Range[n],PrimeQ[ #!+n]&]],{n,1,300}]
  • PARI
    a(n)=c=0;for(k=1,n,if(ispseudoprime(k!+n),c++));c
    vector(100,n,a(n)) \\ Derek Orr, Oct 15 2014

Extensions

Name clarified by Jianing Song, Jul 28 2018
Edited by Michel Marcus, Jul 29 2018
Previous Showing 31-40 of 111 results. Next