A182161
Number of extensional acyclic digraphs on n labeled nodes.
Original entry on oeis.org
1, 1, 2, 12, 216, 10560, 1297440, 381013920, 258918871680, 398362519618560, 1366301392119014400, 10325798296570753920000, 170397664079650720884864000, 6094923358716319193283074457600, 469649545161250827117772066578739200, 77556106803568453086056722450983544320000
Offset: 0
A207259
The number of 2 X 2 matrices with no real eigenvalues and whose entries are integers of absolute value at most n.
Original entry on oeis.org
14, 148, 642, 1832, 4246, 8420, 15202, 25296, 39742, 59668, 86338, 120840, 165174, 220356, 288322, 370816, 470254, 587940, 726994, 888728, 1076422, 1292404, 1539442, 1819440, 2136734, 2493700, 2893586, 3339544, 3835782, 4384036, 4990466, 5656752, 6388158
Offset: 1
-
a:=proc(n)
local x,y,z,w,Eig,count;
count:=0;
for x from -n to n do
for y from -n to n do
for z from -n to n do
for w from -n to n do
Eig:=LinearAlgebra:-Eigenvalues(Matrix([[x,y],[z,w]]));
if Im(Eig[1]) <> 0 then count:=count+1; fi;
od:
od:
od:
od:
count;
end:
A219736
The number of 2 X 2 matrices with all eigenvalues real and whose entries are integers with absolute value at most n.
Original entry on oeis.org
67, 477, 1759, 4729, 10395, 20141, 35423, 58225, 90579, 134813, 193503, 269785, 366267, 486925, 635199, 815105, 1030371, 1286221, 1586447, 1937033, 2342379, 2808221, 3340239, 3945361, 4628467, 5396781, 6257039, 7216457, 8281579, 9461805, 10762495, 12193873
Offset: 1
-
a:=proc(n)
local x,y,z,w,Eig,count;
count:=0;
for x from -n to n do
for y from -n to n do
for z from -n to n do
for w from -n to n do
Eig:=LinearAlgebra:-Eigenvalues(Matrix([[x,y],[z,w]]));
if Im(Eig[1]) = 0 then count:=count+1; fi;
od:
od:
od:
od:
count;
end:
A219765
Triangle of coefficients of a polynomial sequence related to the coloring of labeled graphs.
Original entry on oeis.org
1, 0, 1, 0, -1, 2, 0, 5, -12, 8, 0, -79, 208, -192, 64, 0, 3377, -9520, 10240, -5120, 1024, 0, -362431, 1079744, -1282560, 778240, -245760, 32768, 0, 93473345, -291615296, 372893696, -255754240, 100925440, -22020096, 2097152, 0, -56272471039, 182582658048, -247557029888, 185511968768, -84263567360, 23488102400, -3758096384, 268435456
Offset: 0
Triangle begins:
n\k.|..0.....1......2.......3......4.......5
= = = = = = = = = = = = = = = = = = = = = = =
.0..|..1
.1..|..0.....1
.2..|..0....-1......2
.3..|..0.....5....-12.......8
.4..|..0...-79....208....-192.....64
.5..|..0..3377..-9520...10240..-5120....1024
...
Row 3 = [5, -12, 8]: There are 4 unlabeled graphs on 3 vertices, namely
(a) o o o (b) o o----o (c) o----o----o
(d) 0
/ \
0---0
with chromatic polynomials x^3, x^2*(x-1), x*(x-1)^2 and (x-1)^3 - (x-1), respectively. Allowing for labeling, there is 1 labeled graph of type (a), 3 labeled graphs of type (b), 3 labeled graphs of type (c) and 1 labeled graph of type (d). Thus the sum of the chromatic polynomials over all labeled graphs on 3 nodes is x^3 + 3*x^2*(x-1) + 3*x*(x-1)^2 + (x-1)^3 - (x-1) = 5*x - 12*x^2 + 8*x^3.
Row 3 of A058843 is [1,12,8]. Thus R(3,x) = x + 12*x*(x-1) + 8*x*(x-1)*(x-2) = 5*x - 12*x^2 + 8*x^3.
- Alois P. Heinz, Rows n = 0..77, flattened
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- R. P. Stanley, Exponential structures
- R. P. Stanley, Acyclic orientation of graphs, Discrete Math. 5 (1973), 171-178.
- Wikipedia, Graph coloring
-
R:= proc(n) option remember; `if`(n=0, 1, expand(x*add(
binomial(n-1, k)*2^(k*(n-k))*subs(x=x-1, R(k)), k=0..n-1)))
end:
T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(R(n)):
seq(T(n), n=0..10); # Alois P. Heinz, May 16 2024
-
r[0] = 1; r[1] = x; r[n_] := r[n] = x*Sum[ Binomial[n-1, k]*2^(k*(n-k))*(r[k] /. x -> x-1), {k, 0, n-1}]; row[n_] := CoefficientList[ r[n], x]; Table[ row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Apr 17 2013 *)
A339768
Square array read by descending antidiagonals. T(n,k) is the number of acyclic k-multidigraphs on n labeled vertices, n>=0,k>=0.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 25, 1, 1, 1, 7, 109, 543, 1, 1, 1, 9, 289, 9449, 29281, 1, 1, 1, 11, 601, 63487, 3068281, 3781503, 1, 1, 1, 13, 1081, 267249, 69711361, 3586048685, 1138779265, 1
Offset: 0
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 25, 109, 289, 601, 1081, ...
1, 543, 9449, 63487, 267249, 849311, ...
1, 29281, 3068281, 69711361, 742650001, 5004309601, ...
-
nn = 5; Table[g[n_] := q^Binomial[n, 2] n!; e[z_] := Sum[z^k/g[k], {k, 0, nn}];
Table[g[n], {n, 0, nn}] CoefficientList[Series[1/e[-z], {z, 0, nn}], z], {q, 1, nn + 1}] //Transpose // Grid
A355612
Number of labeled digraphs on [n] such that for any pair C_1,C_2 of distinct strongly connected components, if x in C_1 is directed to y in C_2 then every vertex in C_1 is directed to every vertex in C_2.
Original entry on oeis.org
1, 1, 4, 52, 2524, 629296, 750098464, 3540134362192, 63605185617860464, 4402130837352016607296, 1190565802204629673473661504, 1270503156085666608161173288964992, 5381113705726490960372769906727545572224, 90765998703828737395601069325546106634460887296, 6109068274998388232409260496587163340177606642565219584
Offset: 0
-
nn = 14; d[x_] := Total[Cases[Import["https://oeis.org/A003024/b003024.txt",
"Table"], {, }][[All, 2]]*Table[x^(i - 1)/(i - 1)!, {i, 1, 41}]];
s[x_] := Total[ Prepend[Cases[Import["https://oeis.org/A003030/b003030.txt",
"Table"], {, }][[All, 2]], 1]* Table[x^(i - 1)/(i - 1)!, {i, 1, 59}]];
Range[0, nn]! CoefficientList[Series[d[s[x] - 1], {x, 0, nn}], x]
A361269
Triangular array read by rows. T(n,k) is the number of binary relations on [n] containing exactly k strongly connected components, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 2, 0, 4, 12, 0, 144, 168, 200, 0, 25696, 18768, 12384, 8688, 0, 18082560, 8697280, 3923040, 1914560, 936992, 0, 47025585664, 14670384000, 4512045120, 1622358720, 647087040, 242016192, 0, 450955726792704, 87781550054912, 17679638000640, 4496696041600, 1408276410240, 482302375296, 145763745920
Offset: 0
1;
0, 2;
0, 4, 12;
0, 144, 168, 200;
0, 25696, 18768, 12384, 8688;
...
- E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
- R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
- Wikipedia, Strongly connected component
-
nn =15; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]]; begf = Total[CoefficientList[ Series[1/(Total[CoefficientList[Series[ Exp[-u *s[x]], {x, 0, nn}], x]* Table[z^n/(2^Binomial[n, 2]), {n, 0, nn}]]), {z, 0, nn}],z]*Table[z^n 2^Binomial[n, 2], {n, 0, nn}]] /. z -> 2 z;
Range[0, nn]! CoefficientList[begf, {z, u}] // Grid (* Geoffrey Critzer, Mar 14 2023 after Andrew Howroyd *)
-
Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
G(e, p)={Z(p, k->1/e^(k*(k-1)/2))}
U(e, p)={Z(p, k->e^(k*(k-1)/2))}
RelEgf(n, e)={sum(k=0, n, e^(k^2)*x^k/k!, O(x*x^n) )}
T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, RelEgf(n, e)))))))))]}
{ my(A=T(6)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Mar 06 2023
A361455
Triangle read by rows: T(n,k) is the number of simple digraphs on labeled n nodes with k strongly connected components.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 18, 21, 25, 0, 1606, 1173, 774, 543, 0, 565080, 271790, 122595, 59830, 29281, 0, 734774776, 229224750, 70500705, 25349355, 10110735, 3781503, 0, 3523091615568, 685793359804, 138122171880, 35130437825, 11002159455, 3767987307, 1138779265
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 3;
0, 18, 21, 25;
0, 1606, 1173, 774, 543;
0, 565080, 271790, 122595, 59830, 29281;
0, 734774776, 229224750, 70500705, 25349355, 10110735, 3781503;
...
-
Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
G(e, p)={Z(p, k->1/e^(k*(k-1)/2))}
U(e, p)={Z(p, k->e^(k*(k-1)/2))}
DigraphEgf(n, e)={sum(k=0, n, e^(k*(k-1))*x^k/k!, O(x*x^n) )}
T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, DigraphEgf(n, e)))))))))]}
{ my(A=T(6)); for(i=1, #A, print(A[i])) }
A361592
Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] with exactly k strongly connected components of size 1, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 1, 0, 3, 18, 21, 0, 25, 1699, 1080, 774, 0, 543, 587940, 267665, 103860, 59830, 0, 29281, 750744901, 225144360, 64169325, 19791000, 10110735, 0, 3781503, 3556390155318, 672637205149, 126726655860, 29445913175, 7939815030, 3767987307, 0, 1138779265
Offset: 0
Triangle begins:
1;
0, 1;
1, 0, 3;
18, 21, 0, 25;
1699, 1080, 774, 0, 543;
587940, 267665, 103860, 59830, 0, 29281;
...
- E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
- R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
- Wikipedia, Strongly connected component
-
nn = 7; B[n_] := n! 2^Binomial[n, 2]; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]];s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]]; ggfz[egfx_] := Normal[Series[egfx, {x, 0, nn}]] /.Table[x^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggfz[Exp[-(s[x] - x + u x)]], {z, 0, nn}], {z,u}])[[i]], i], {i, 1, nn + 1}] // Grid
A361718
Triangular array read by rows. T(n,k) is the number of labeled directed acyclic graphs on [n] with exactly k nodes of indegree 0.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 15, 9, 1, 0, 316, 198, 28, 1, 0, 16885, 10710, 1610, 75, 1, 0, 2174586, 1384335, 211820, 10575, 186, 1, 0, 654313415, 416990763, 64144675, 3268125, 61845, 441, 1, 0, 450179768312, 286992935964, 44218682312, 2266772550, 43832264, 336924, 1016, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 15, 9, 1;
0, 316, 198, 28, 1;
0, 16885, 10710, 1610, 75, 1;
...
Cf.
A000169,
A059201,
A082402,
A088957,
A133686,
A334282,
A350415,
A367904,
A367908,
A368600,
A368601.
-
nn = 8; B[n_] := n! 2^Binomial[n, 2] ;ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /. Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[ Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-z]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}] // Grid
nv=4;Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]==1&]],{n,0,nv},{k,0,n}]
Comments