cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 73 results. Next

A182161 Number of extensional acyclic digraphs on n labeled nodes.

Original entry on oeis.org

1, 1, 2, 12, 216, 10560, 1297440, 381013920, 258918871680, 398362519618560, 1366301392119014400, 10325798296570753920000, 170397664079650720884864000, 6094923358716319193283074457600, 469649545161250827117772066578739200, 77556106803568453086056722450983544320000
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2012

Keywords

Crossrefs

Cf. A001192, A003024. Row sums of A182162.

Formula

a(n) = n!*A001192(n).

A207259 The number of 2 X 2 matrices with no real eigenvalues and whose entries are integers of absolute value at most n.

Original entry on oeis.org

14, 148, 642, 1832, 4246, 8420, 15202, 25296, 39742, 59668, 86338, 120840, 165174, 220356, 288322, 370816, 470254, 587940, 726994, 888728, 1076422, 1292404, 1539442, 1819440, 2136734, 2493700, 2893586, 3339544, 3835782, 4384036, 4990466, 5656752, 6388158
Offset: 1

Views

Author

W. Edwin Clark, Nov 26 2012

Keywords

Crossrefs

Programs

  • Maple
    a:=proc(n)
    local x,y,z,w,Eig,count;
    count:=0;
    for x from -n to n do
    for y from -n to n do
    for z from -n to n do
    for w from -n to n do
    Eig:=LinearAlgebra:-Eigenvalues(Matrix([[x,y],[z,w]]));
    if Im(Eig[1]) <> 0  then count:=count+1; fi;
    od:
    od:
    od:
    od:
    count;
    end:

Formula

a(n) = (2*n+1)^4 - A219736(n).

Extensions

a(16)-a(33) from Hiroaki Yamanouchi, Oct 03 2014

A219736 The number of 2 X 2 matrices with all eigenvalues real and whose entries are integers with absolute value at most n.

Original entry on oeis.org

67, 477, 1759, 4729, 10395, 20141, 35423, 58225, 90579, 134813, 193503, 269785, 366267, 486925, 635199, 815105, 1030371, 1286221, 1586447, 1937033, 2342379, 2808221, 3340239, 3945361, 4628467, 5396781, 6257039, 7216457, 8281579, 9461805, 10762495, 12193873
Offset: 1

Views

Author

W. Edwin Clark, Nov 26 2012

Keywords

Crossrefs

Programs

  • Maple
    a:=proc(n)
    local x,y,z,w,Eig,count;
    count:=0;
    for x from -n to n do
    for y from -n to n do
    for z from -n to n do
    for w from -n to n do
    Eig:=LinearAlgebra:-Eigenvalues(Matrix([[x,y],[z,w]]));
    if Im(Eig[1]) = 0  then count:=count+1; fi;
    od:
    od:
    od:
    od:
    count;
    end:

Formula

a(n) = (2*n+1)^4 - A207259(n).

Extensions

a(16)-a(32) from Hiroaki Yamanouchi, Oct 03 2014

A219765 Triangle of coefficients of a polynomial sequence related to the coloring of labeled graphs.

Original entry on oeis.org

1, 0, 1, 0, -1, 2, 0, 5, -12, 8, 0, -79, 208, -192, 64, 0, 3377, -9520, 10240, -5120, 1024, 0, -362431, 1079744, -1282560, 778240, -245760, 32768, 0, 93473345, -291615296, 372893696, -255754240, 100925440, -22020096, 2097152, 0, -56272471039, 182582658048, -247557029888, 185511968768, -84263567360, 23488102400, -3758096384, 268435456
Offset: 0

Views

Author

Peter Bala, Apr 16 2013

Keywords

Comments

A simple graph G is a k-colorable graph if it is possible to assign one of k' <= k colors to each vertex of G so that no two adjacent vertices receive the same color. Such an assignment of colors is called a k-coloring function for the graph. The chromatic polynomial P(G,k) of a simple graph G gives the number of different k-colorings functions of the graph as a function of k. P(G,k) is a polynomial function of k.
The row polynomials R(n,x) of this triangle are defined to be the sum of the chromatic polynomials of all labeled simple graphs on n vertices: R(n,x) = sum {labeled graphs G on n nodes} P(G,x). An example is given below.

Examples

			Triangle begins:
  n\k.|..0.....1......2.......3......4.......5
  = = = = = = = = = = = = = = = = = = = = = = =
  .0..|..1
  .1..|..0.....1
  .2..|..0....-1......2
  .3..|..0.....5....-12.......8
  .4..|..0...-79....208....-192.....64
  .5..|..0..3377..-9520...10240..-5120....1024
  ...
Row 3 = [5, -12, 8]: There are 4 unlabeled graphs on 3 vertices, namely
(a)  o    o    o    (b)  o    o----o    (c)  o----o----o
(d)   0
     / \
    0---0
with chromatic polynomials x^3, x^2*(x-1), x*(x-1)^2 and (x-1)^3 - (x-1), respectively. Allowing for labeling, there is 1 labeled graph of type (a), 3 labeled graphs of type (b), 3 labeled graphs of type (c) and 1 labeled graph of type (d). Thus the sum of the chromatic polynomials over all labeled graphs on 3 nodes is x^3 + 3*x^2*(x-1) + 3*x*(x-1)^2  + (x-1)^3 - (x-1) = 5*x - 12*x^2 + 8*x^3.
Row 3 of A058843 is [1,12,8]. Thus R(3,x) = x + 12*x*(x-1) + 8*x*(x-1)*(x-2) = 5*x - 12*x^2 + 8*x^3.
		

Crossrefs

Cf. A003024 (alt. row sums), A006125 (main diagonal), A095351 (main subdiagonal), A134531 (column 1), A058843, A322280.

Programs

  • Maple
    R:= proc(n) option remember; `if`(n=0, 1, expand(x*add(
          binomial(n-1, k)*2^(k*(n-k))*subs(x=x-1, R(k)), k=0..n-1)))
        end:
    T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(R(n)):
    seq(T(n), n=0..10);  # Alois P. Heinz, May 16 2024
  • Mathematica
    r[0] = 1; r[1] = x; r[n_] := r[n] = x*Sum[ Binomial[n-1, k]*2^(k*(n-k))*(r[k] /. x -> x-1), {k, 0, n-1}]; row[n_] := CoefficientList[ r[n], x]; Table[ row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Apr 17 2013 *)

Formula

Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2!*2) + x^3/(3!*2^3) + x^4/(4!*2^6) + .... Then a generating function for the triangle is E(z)^x = Sum_{n >= 0} R(n,x)*z^n/(n!*2^C(n,2)) = 1 + x*z + (-x + 2*x^2)*z^2/(2!*2) + (5*x - 12*x^2 + 8*x^3)*z^3/(3!*2^3) + ....
The row polynomials satisfy the recurrence equation: R(0,x) = 1 and
R(n+1,x) = x*Sum_{k = 0..n} binomial(n,k)*2^(k*(n+1-k))*R(k,x-1).
In terms of the basis of falling factorial polynomials we have, for n >= 1, R(n,x) = Sum_{k = 1..n} A058843(n,k)*x*(x-1)*...*(x-k+1).
The polynomials R(n,x)/2^comb(n,2) form a sequence of binomial type (see Stanley). Setting D = d/dx, the associated delta operator begins D + D^2/(2!*2) + D^3/(3!*2^3) - D^4/(4!*2^4) + 23*D^5/(5!*2^5) + 559*D^6/(6!*2^6) - ... obtained by series reversion of the formal series D - D^2/(2!*2) + 5*D^3/(3!*2^3) - 79*D^4/(4!*2^4) + 3377*D^5/(5!*2^5) - ... coming from column 1 of the triangle.
Alternating row sums A003024. Column 1 = A134531. Main diagonal A006125. Main subdiagonal (-1)*A095351.
The row polynomials evaluated at k is A322280(n,k). - Geoffrey Critzer, Mar 02 2024
Let k>=1 and let D be a directed acyclic graph with vertices labeled on [n]. Then (-1)^n*R(n,-k) is the number of maps C:[n]->[k] such that for all vertices i,j in [n], if i is directed to j in D then C(i)>=C(j). Cf A003024 (k=1), A339934 (k=2). - Geoffrey Critzer, May 15 2024

A339768 Square array read by descending antidiagonals. T(n,k) is the number of acyclic k-multidigraphs on n labeled vertices, n>=0,k>=0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 25, 1, 1, 1, 7, 109, 543, 1, 1, 1, 9, 289, 9449, 29281, 1, 1, 1, 11, 601, 63487, 3068281, 3781503, 1, 1, 1, 13, 1081, 267249, 69711361, 3586048685, 1138779265, 1
Offset: 0

Views

Author

Geoffrey Critzer, Feb 21 2021

Keywords

Comments

Here, a k-multidigraph is a directed graph where up to k arcs (directed edges) are allowed to join vertex pairs. The arcs have no identity, i.e., they are indistinguishable except for the ordered pair of distinct vertices that they join.

Examples

			  1,     1,       1,        1,         1,          1, ...
  1,     1,       1,        1,         1,          1, ...
  1,     3,       5,        7,         9,         11, ...
  1,    25,     109,      289,       601,       1081, ...
  1,   543,    9449,    63487,    267249,     849311, ...
  1, 29281, 3068281, 69711361, 742650001, 5004309601, ...
		

Crossrefs

Cf. A003024 (column k=1), A188457 (column k=2), A137435 (column k=3).
Main diagonal gives A354962.

Programs

  • Mathematica
    nn = 5; Table[g[n_] := q^Binomial[n, 2] n!; e[z_] := Sum[z^k/g[k], {k, 0, nn}];
       Table[g[n], {n, 0, nn}] CoefficientList[Series[1/e[-z], {z, 0, nn}], z], {q, 1, nn + 1}] //Transpose // Grid

Formula

Let E(x) = Sum_{n>=0} x^n/(n!*(k+1)^binomial(n,2)). Then 1/E(-x) = Sum_{n>=0} T(n,k)x^n/(n!*(k+1)^binomial(n,2)).
T(0,k) = 1 and T(n,k) = Sum_{j=1..n} (-1)^(j+1) * (k+1)^(j*(n-j)) * binomial(n,j) * T(n-j,k) for n > 0. - Seiichi Manyama, Jun 13 2022

A355612 Number of labeled digraphs on [n] such that for any pair C_1,C_2 of distinct strongly connected components, if x in C_1 is directed to y in C_2 then every vertex in C_1 is directed to every vertex in C_2.

Original entry on oeis.org

1, 1, 4, 52, 2524, 629296, 750098464, 3540134362192, 63605185617860464, 4402130837352016607296, 1190565802204629673473661504, 1270503156085666608161173288964992, 5381113705726490960372769906727545572224, 90765998703828737395601069325546106634460887296, 6109068274998388232409260496587163340177606642565219584
Offset: 0

Views

Author

Geoffrey Critzer, Jul 09 2022

Keywords

Comments

Here a digraph can have both a directed edge from x to y and y to x but no self loops are allowed.

Crossrefs

Programs

  • Mathematica
    nn = 14; d[x_] := Total[Cases[Import["https://oeis.org/A003024/b003024.txt",
          "Table"], {, }][[All, 2]]*Table[x^(i - 1)/(i - 1)!, {i, 1, 41}]];
    s[x_] := Total[ Prepend[Cases[Import["https://oeis.org/A003030/b003030.txt",
           "Table"], {, }][[All, 2]], 1]* Table[x^(i - 1)/(i - 1)!, {i, 1, 59}]];
    Range[0, nn]! CoefficientList[Series[d[s[x] - 1], {x, 0, nn}], x]

Formula

E.g.f.: D(S(x)-1) where D(x),S(x) are the e.g.f.'s for A003024 and A003030 respectively.

A361269 Triangular array read by rows. T(n,k) is the number of binary relations on [n] containing exactly k strongly connected components, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 2, 0, 4, 12, 0, 144, 168, 200, 0, 25696, 18768, 12384, 8688, 0, 18082560, 8697280, 3923040, 1914560, 936992, 0, 47025585664, 14670384000, 4512045120, 1622358720, 647087040, 242016192, 0, 450955726792704, 87781550054912, 17679638000640, 4496696041600, 1408276410240, 482302375296, 145763745920
Offset: 0

Views

Author

Geoffrey Critzer, Mar 06 2023

Keywords

Examples

			  1;
  0,     2;
  0,     4,    12;
  0,   144,   168,   200;
  0, 25696, 18768, 12384, 8688;
  ...
		

Crossrefs

Cf. A003030, A003024, A002416 (row sums).

Programs

  • Mathematica
    nn =15; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
       Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]]; begf = Total[CoefficientList[ Series[1/(Total[CoefficientList[Series[ Exp[-u *s[x]], {x, 0, nn}], x]* Table[z^n/(2^Binomial[n, 2]), {n, 0, nn}]]), {z, 0, nn}],z]*Table[z^n 2^Binomial[n, 2], {n, 0, nn}]] /. z -> 2 z;
    Range[0, nn]! CoefficientList[begf, {z, u}] // Grid (* Geoffrey Critzer, Mar 14 2023 after Andrew Howroyd *)
  • PARI
    Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
    G(e, p)={Z(p, k->1/e^(k*(k-1)/2))}
    U(e, p)={Z(p, k->e^(k*(k-1)/2))}
    RelEgf(n, e)={sum(k=0, n, e^(k^2)*x^k/k!, O(x*x^n) )}
    T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, RelEgf(n, e)))))))))]}
    { my(A=T(6)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Mar 06 2023

Formula

E.g.f. for column 1: A(2*x) where A(x) is the e.g.f. for A003030.
E.g.f. for main diagonal: B(2*x) where B(x) is the e.g.f. for A003024.

Extensions

Terms a(15) and beyond from Andrew Howroyd, Mar 06 2023

A361455 Triangle read by rows: T(n,k) is the number of simple digraphs on labeled n nodes with k strongly connected components.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 18, 21, 25, 0, 1606, 1173, 774, 543, 0, 565080, 271790, 122595, 59830, 29281, 0, 734774776, 229224750, 70500705, 25349355, 10110735, 3781503, 0, 3523091615568, 685793359804, 138122171880, 35130437825, 11002159455, 3767987307, 1138779265
Offset: 0

Views

Author

Andrew Howroyd, Mar 16 2023

Keywords

Examples

			Triangle begins:
  1;
  0,         1;
  0,         1,         3;
  0,        18,        21,       25;
  0,      1606,      1173,      774,      543;
  0,    565080,    271790,   122595,    59830,    29281;
  0, 734774776, 229224750, 70500705, 25349355, 10110735, 3781503;
  ...
		

Crossrefs

Column k=1 is A003030.
Main diagonal is A003024.
Row sums are A053763.
The unlabeled version is A361582.
Cf. A189898 (weak components), A361269 (loops allowed), A361591.

Programs

  • PARI
    Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
    G(e, p)={Z(p, k->1/e^(k*(k-1)/2))}
    U(e, p)={Z(p, k->e^(k*(k-1)/2))}
    DigraphEgf(n, e)={sum(k=0, n, e^(k*(k-1))*x^k/k!, O(x*x^n) )}
    T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, DigraphEgf(n, e)))))))))]}
    { my(A=T(6)); for(i=1, #A, print(A[i])) }

Formula

T(n,k) = A361269(n,k)/2^n.

A361592 Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] with exactly k strongly connected components of size 1, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 0, 3, 18, 21, 0, 25, 1699, 1080, 774, 0, 543, 587940, 267665, 103860, 59830, 0, 29281, 750744901, 225144360, 64169325, 19791000, 10110735, 0, 3781503, 3556390155318, 672637205149, 126726655860, 29445913175, 7939815030, 3767987307, 0, 1138779265
Offset: 0

Views

Author

Geoffrey Critzer, Mar 16 2023

Keywords

Examples

			Triangle begins:
       1;
       0,      1;
       1,      0,      3;
      18,     21,      0,    25;
    1699,   1080,    774,     0, 543;
  587940, 267665, 103860, 59830,   0, 29281;
  ...
		

Crossrefs

Cf. A086366 (column k=0), A003024 (main diagonal), A053763 (row sums), A361590 (unlabeled version).

Programs

  • Mathematica
    nn = 7; B[n_] := n! 2^Binomial[n, 2]; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]];s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]]; ggfz[egfx_] := Normal[Series[egfx, {x, 0, nn}]] /.Table[x^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggfz[Exp[-(s[x] - x + u x)]], {z, 0, nn}], {z,u}])[[i]], i], {i, 1, nn + 1}] // Grid

A361718 Triangular array read by rows. T(n,k) is the number of labeled directed acyclic graphs on [n] with exactly k nodes of indegree 0.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 15, 9, 1, 0, 316, 198, 28, 1, 0, 16885, 10710, 1610, 75, 1, 0, 2174586, 1384335, 211820, 10575, 186, 1, 0, 654313415, 416990763, 64144675, 3268125, 61845, 441, 1, 0, 450179768312, 286992935964, 44218682312, 2266772550, 43832264, 336924, 1016, 1
Offset: 0

Views

Author

Geoffrey Critzer, Apr 02 2023

Keywords

Comments

Also the number of sets of n nonempty subsets of {1..n}, k of which are singletons, such that there is only one way to choose a different element from each. For example, row n = 3 counts the following set-systems:
{{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}}
{{1},{1,2},{2,3}} {{1},{2},{2,3}}
{{1},{1,3},{2,3}} {{1},{3},{1,2}}
{{2},{1,2},{1,3}} {{1},{3},{2,3}}
{{2},{1,2},{2,3}} {{2},{3},{1,2}}
{{2},{1,3},{2,3}} {{2},{3},{1,3}}
{{3},{1,2},{1,3}} {{1},{2},{1,2,3}}
{{3},{1,2},{2,3}} {{1},{3},{1,2,3}}
{{3},{1,3},{2,3}} {{2},{3},{1,2,3}}
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
{{2},{1,2},{1,2,3}}
{{2},{2,3},{1,2,3}}
{{3},{1,3},{1,2,3}}
{{3},{2,3},{1,2,3}}

Examples

			Triangle begins:
  1;
  0,     1;
  0,     2,     1;
  0,    15,     9,    1;
  0,   316,   198,   28,  1;
  0, 16885, 10710, 1610, 75, 1;
  ...
		

Crossrefs

Cf. A058876 (mirror), A361579, A224069.
Row-sums are A003024, unlabeled A003087.
Column k = 1 is A003025(n) = |n*A134531(n)|.
Column k = n-1 is A058877.
For fixed sinks we get A368602.
A058891 counts set-systems, unlabeled A000612.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    nn = 8; B[n_] := n! 2^Binomial[n, 2] ;ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /. Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[ Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-z]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}] // Grid
    nv=4;Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]==1&]],{n,0,nv},{k,0,n}]

Formula

T(n,k) = A368602(n,k) * binomial(n,k). - Gus Wiseman, Jan 03 2024
Previous Showing 31-40 of 73 results. Next