cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A276527 Expansion of Product_{k>=1} 1 / (1 + x^k - x^(2*k)).

Original entry on oeis.org

1, -1, 1, -3, 5, -8, 12, -21, 37, -59, 92, -153, 256, -409, 654, -1073, 1754, -2824, 4552, -7394, 12010, -19406, 31337, -50782, 82306, -133072, 215152, -348346, 563939, -912217, 1475604, -2388075, 3864808, -6252750, 10115987, -16369340, 26488326, -42857128
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/Product[1+x^k-x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ -p / (sqrt(5) * r^(n+1)), where r = -(sqrt(5)-1)/2 and p = Product_{n>1} 1/(1 + r^n - r^(2*n)) = 1.0964214808924344474065093...

A296164 a(n) = [x^n] Product_{k>=1} ((1 + x^k)/(1 + x^(3*k)))^n.

Original entry on oeis.org

1, 1, 3, 10, 35, 131, 498, 1919, 7459, 29170, 114653, 452552, 1792754, 7124040, 28386081, 113372690, 453743907, 1819317153, 7306575042, 29386858821, 118348662525, 477188876405, 1926137365804, 7782398551661, 31472648050930, 127384123318906, 515978637418884
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 06 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^k)/(1 + x^(3 k)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}]
    Table[SeriesCoefficient[Product[1/((1 - x^(6 k - 1)) (1 - x^(6 k - 5)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}]
    (* Calculation of constants {d,c}: *) With[{k = 3}, {1/r, Sqrt[QPochhammer[-1, (r*s)^k] / (2*Pi*(r^2*s*Derivative[0, 2][QPochhammer][-1, r*s] - k^2*(r*s)^(2*k) * Derivative[0, 2][QPochhammer][-1, (r*s)^k] - k*(1 + k)*(r*s)^k * Derivative[0, 1][QPochhammer][-1, (r*s)^k]))]} /. FindRoot[{s == QPochhammer[-1, r*s]/QPochhammer[-1, (r*s)^k], QPochhammer[-1, (r*s)^k] + k*(r*s)^k*Derivative[0, 1][QPochhammer][-1, (r*s)^k] == r*Derivative[0, 1][QPochhammer][-1, r*s]}, {r, 1/4}, {s, 2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)

Formula

a(n) = [x^n] Product_{k>=1} 1/((1 - x^(6*k-1))*(1 - x^(6*k-5)))^n.
a(n) ~ c * d^n / sqrt(n), where d = 4.129321588075726742506... and c = 0.25764349816429874321... - Vaclav Kotesovec, May 18 2018

A304632 Expansion of (1/(1 - x))* Product_{k>=1} (1 + x^k)/(1 + x^(3*k)).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 12, 15, 18, 22, 27, 33, 40, 48, 57, 67, 79, 93, 109, 127, 147, 170, 196, 226, 260, 298, 340, 387, 440, 500, 567, 641, 723, 814, 916, 1030, 1156, 1295, 1448, 1617, 1804, 2011, 2239, 2489, 2763, 3064, 3395, 3759, 4158, 4594, 5070, 5590, 6159, 6781, 7460, 8199, 9003
Offset: 0

Views

Author

Ilya Gutkovskiy, May 15 2018

Keywords

Comments

Partial sums of A003105.

Crossrefs

Programs

  • Mathematica
    nmax = 57; CoefficientList[Series[1/(1 - x) Product[(1 + x^k)/(1 + x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 57; CoefficientList[Series[1/(1 - x) Product[1/((1 - x^(6 k + 1)) (1 - x^(6 k + 5))), {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 57; CoefficientList[Series[1/(1 - x) Product[1/(1 - x^k + x^(2 k)), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: (1/(1 - x))*Product_{k>=0} 1/((1 - x^(6*k+1))*(1 - x^(6*k+5))).
G.f.: (1/(1 - x))*Product_{k>=0} 1/(1 - x^k + x^(2*k)).
a(n) ~ exp(sqrt(2*n)*Pi/3) * sqrt(3) / (Pi * 2^(3/4) * n^(1/4)). - Vaclav Kotesovec, May 19 2018

A332309 Number of compositions (ordered partitions) of n into distinct parts where no part is a multiple of 3.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 4, 9, 9, 6, 15, 17, 38, 29, 53, 70, 65, 91, 150, 229, 277, 236, 439, 489, 514, 897, 993, 1632, 1521, 2339, 2972, 3257, 4121, 5992, 5303, 7729, 10932, 15157, 17653, 18398, 26305, 31683, 34408, 51885, 58173, 61098, 90519, 101249, 143402, 156905
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 09 2020

Keywords

Examples

			a(9) = 6 because we have [8, 1], [7, 2], [5, 4], [4, 5], [2, 7] and [1, 8].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 b(n$2, 0):
    seq(a(n), n=0..55);  # Alois P. Heinz, Feb 09 2020
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0, If[n == 0, p!, Sum[b[n - i j, i - 1, p + j], {j, 0, Min[Mod[i, 3], 1, n/i]}]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 55] (* Jean-François Alcover, Nov 09 2020, after Alois P. Heinz *)

A101230 Number of partitions of 2n in which both odd parts and parts that are multiples of 3 occur with even multiplicities. There is no restriction on the other even parts.

Original entry on oeis.org

1, 2, 4, 7, 12, 20, 32, 50, 76, 113, 166, 240, 343, 484, 676, 935, 1282, 1744, 2355, 3158, 4208, 5573, 7340, 9616, 12536, 16266, 21012, 27028, 34628, 44196, 56204, 71226, 89964, 113270, 142180, 177948, 222089, 276430, 343172, 424959, 524966
Offset: 0

Views

Author

Noureddine Chair, Dec 16 2004

Keywords

Comments

Note that if a partition of n has odd parts occur with even multiplicities then n must be even. This is the reason for only looking at partitions of 2n. - Michael Somos, Mar 04 2012

Examples

			a(8)=12 because 8 = 4+4 = 4+2+2 = 4+2+1+1 = 4+1+1+1+1 = 3+3+2 = 3+3+1+1 = 2+2+2+2 = 2+2+2+1+1 = 2+2+1+1+1+1 = 2+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1.
1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 20*x^5 + 32*x^6 + 50*x^7 + 76*x^8 + 113*x^9 + ...
1/q + 2*q^7 + 4*q^15 + 7*q^23 + 12*q^31 + 20*q^39 + 32*q^47 + 50*q^55 + 76*q^63 + ...
		

Crossrefs

Programs

  • Maple
    series(product((1+x^k)/((1-x^k)*(1+x^(3*k))),k=1..100),x=0,100);
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(3*k-1))*(1+x^(3*k-2)) / (1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 01 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) / (eta(x + A)^2 * eta(x^6 + A)), n))} /* Michael Somos, Mar 04 2012 */

Formula

G.f.: product_{k>0}(1+x^k)/((1-x^k)(1+x^(3k)))= Theta_4(0, x^3)/theta(0, x)1/product_{k>0}(1-x^(3k)).
Euler transform of period 6 sequence [2, 1, 1, 1, 2, 1, ...]. - Vladeta Jovovic, Dec 17 2004
Expansion of q^(1/8) * eta(q^2) * eta(q^3) / (eta(q)^2 * eta(q^6)) in powers of q. - Michael Somos, Mar 04 2012
Convolution inverse of A089812. - Michael Somos, Mar 04 2012
Convolution product of A000041 and A003105. - Michael Somos, Mar 04 2012
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (6*n). - Vaclav Kotesovec, Sep 01 2015

A103260 Number of partitions of 2n prime to 3 with all odd parts occurring with multiplicity 2. The even parts occur with multiplicity 1.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 6, 8, 10, 10, 12, 16, 22, 28, 32, 36, 42, 52, 66, 80, 92, 104, 120, 144, 174, 206, 236, 266, 304, 356, 420, 488, 554, 624, 708, 816, 946, 1084, 1224, 1372, 1548, 1764, 2016, 2288, 2568, 2868, 3216, 3632, 4110, 4626, 5166, 5748, 6412, 7188
Offset: 0

Views

Author

Noureddine Chair, Feb 15 2005

Keywords

Comments

Convolution of A098884 and A003105. [corrected by Vaclav Kotesovec, Feb 07 2021]
Also equal to the number of overpartitions of n into parts congruent to 1 or 5 modulo 6. - Jeremy Lovejoy, Nov 28 2024

Examples

			E.g. a(7)=8 because 14=10+4=10+2+1+1=8+4+2=8+4+1+1=7+7=5+5+4=5+5+2+1+1.
		

Crossrefs

Programs

  • Maple
    series(product(((1+x^(6*k-1))*(1+x^(6*k-5)))/((1-x^(6*k-1))*(1-x^(6*k-5))),k=1..100),x=0,100);
    # alternative program:
    with(gfun): series( add(x^(n*(3*n-2)), n = -6..6)/add((-1)^n*x^(n*(3*n-2)), n = -6..6), x, 100): seriestolist(%); # Peter Bala, Feb 05 2021
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^(6*k-1))*(1+x^(6*k-5)))/((1-x^(6*k-1))*(1-x^(6*k-5))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 01 2015 *)

Formula

G.f.: (Theta_4(0, x^2)*theta_4(0, x^3))/(theta_4(0, x)*theta_4(0, x^(6))) = Product_{k>0}((1+x^(6*k-1))*(1+x^(6*k-5)))/((1-x^(6*k-1))*(1-x^(6*k-5))).
Euler transform of period 12 sequence [2, -1, 0, 0, 2, 0, 2, 0, 0, -1, 2, 0, ...]. - Vladeta Jovovic, Feb 17 2005
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(3/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 01 2015
G.f.: f(x,x^5)/f(-x,-x^5) = ( Sum_{n = -oo..oo} x^(n*(3*n-2)) )/( Sum_{n = -oo..oo} (-1)^n*x^(n*(3*n-2)) ), where f(a,b) = Sum_{n = -oo..oo} a^(n*(n+1)/2)*b^(n*(n-1)/2) is Ramanujan's 2-variable theta function. Cf. A080054 and A098151. - Peter Bala, Feb 05 2021

Extensions

Example corrected by Vaclav Kotesovec, Sep 01 2015

A227398 Expansion of chi(x^3) / chi(x) in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 1, -1, 1, -2, 2, -3, 3, -3, 4, -5, 6, -7, 8, -9, 10, -12, 14, -16, 18, -20, 23, -26, 30, -34, 38, -42, 47, -53, 60, -67, 74, -82, 91, -102, 114, -126, 139, -153, 169, -187, 207, -228, 250, -274, 301, -331, 364, -399, 436, -476, 520, -569, 622, -679
Offset: 0

Views

Author

Michael Somos, Sep 20 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x + x^2 - x^3 + x^4 - 2*x^5 + 2*x^6 - 3*x^7 + 3*x^8 - 3*x^9 + ...
G.f. = 1/q - q^11 + q^23 - q^35 + q^47 - 2*q^59 + 2*q^71 - 3*q^83 + 3*q^95 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 / Product[ 1 - (-x)^k + x^(2 k), {k, n}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k + x^(2 k), {k, 1, n, 2}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, 3, n, 6}] / Product[ 1 + x^k, {k, 1, n, 2}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ 1 / (Product[ 1 + x^k, {k, 1, n, 6}] Product[ 1 + x^k, {k, 5, n, 6}]), {x, 0, n}];
    a[ n_] := SeriesCoefficient[ Product[ 1 + (-x)^k, {k, 1, n, 3}] Product[ 1 + (-x)^k, {k, 2, n, 3}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^3, x^6] / QPochhammer[ -x, x^2], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^2 / (eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A)), n))};
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = x * O(x^n); m = sqrtint(3*n + 1); polcoeff( eta(x^6 + A) / sum(k= -((m-1)\3), (m+1)\3, x^(k * (3*k - 2)), A), n))};

Formula

Expansion of f(-x^6) / f(x, x^5) in powers of x where f(,) is Ramanujan's general theta function.
Expansion of q^(1/12) * eta(q) * eta(q^4) * eta(q^6)^2 / (eta(q^2)^2 * eta(q^3) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [-1, 1, 0, 0, -1, 0, -1, 0, 0, 1, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A098884.
G.f.: 1 / Product_{k>0} (1 - (-x)^k + x^(2*k)).
G.f.: Product_{k>0} (1 - x^(2*k - 1) + x^(4*k - 2)).
G.f.: Product_{k>0} ((1 + x^(6*k - 3)) / (1 + x^(2*k - 1))).
G.f.: 1 / Product_{k>0} ((1 + x^(6*k - 1)) * (1 + x^(6*k - 5))).
G.f.: Product_{k>0} (1 + (-x)^(3*k - 1)) * (1 + (-x)^(3*k - 2)).
G.f.: (Sum_{k in Z} (-1)^k * x^(3*k * (3*k-1))) / (Sum_{k in Z} x^(k * (3*k - 2))).
a(n) = (-1)^n * A003105(n). Convolution inverse of A098884.

A293302 E.g.f.: Product_{m>0} 1/(1 - x^m + x^(2*m)/2!).

Original entry on oeis.org

1, 1, 3, 12, 66, 450, 3510, 32760, 335160, 3832920, 48648600, 673596000, 9961736400, 161026866000, 2775402630000, 50713246584000, 987048958896000, 20331148966128000, 440625863806128000, 10057578887708352000, 240218186856167520000, 6010719623406257760000
Offset: 0

Views

Author

Seiichi Manyama, Oct 05 2017

Keywords

Crossrefs

Column k=2 of A293301.
Cf. A003105.

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[1/Product[1 - x^k + x^(2*k)/2, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 05 2017 *)
  • PARI
    my(x = 'x + O('x^40)); Vec(serlaplace(prod(m=1, 40, 1/(1 - x^m + x^(2*m)/2!)))) \\ Michel Marcus, Oct 05 2017

Formula

a(n) ~ (5*Pi^2/3 - 4*log(2)^2)^(1/4) * n^(n - 1/4) / (4*exp(n - sqrt((5*Pi^2/12 - log(2)^2)*n))). - Vaclav Kotesovec, Oct 07 2024

A260183 Expansion of f(x, x^2) * f(x^4, x^8) / f(-x^3, -x^6)^2 in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 10, 14, 18, 23, 30, 38, 47, 60, 74, 91, 114, 139, 169, 207, 250, 301, 364, 436, 520, 622, 739, 875, 1038, 1224, 1439, 1694, 1985, 2321, 2714, 3162, 3677, 4275, 4956, 5735, 6634, 7655, 8819, 10155, 11669, 13389, 15354, 17575, 20091
Offset: 0

Views

Author

Michael Somos, Nov 10 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 10*x^8 + 14*x^9 + ...
G.f. = 1/q + q + q^3 + 2*q^5 + 3*q^7 + 4*q^9 + 6*q^11 + 8*q^13 + 10*q^15 + ...
		

Crossrefs

Cf. A003105.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2, x^12] QPochhammer[ x^10, x^12] QPochhammer[ x^12, x^24] QPochhammer[ x^8] / QPochhammer[x], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^8 + A) * eta(x^12 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^24 + A)), n))};

Formula

Expansion of q^(1/2) * eta(q^2) * eta(q^8) * eta(q^12)^2 / (eta(q) * eta(q^4) * eta(q^6) * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [ 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, ...].
a(n) = A003105(2*n + 1).

A284092 Number of partitions of n into distinct parts 8k+1 or 8k+7.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0, 1, 2, 3, 3, 2, 1, 0, 0, 1, 3, 5, 5, 3, 1, 0, 0, 2, 5, 7, 7, 5, 2, 0, 1, 3, 7, 11, 11, 7, 3, 1, 1, 5, 11, 15, 15, 11, 5, 1, 2, 7, 15, 22, 22, 15, 7, 2, 3, 11, 22, 30, 30, 22, 11, 4, 5, 15, 30, 42, 42
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Comments

Convolution of A284093 and A284095.

Crossrefs

Cf. Product_{k>0} (1 + x^(m*k - 1)) * (1 + x^(m*k - m + 1)): A003105 (m=3), A000700 (m=4), A203776 (m=5), A098884 (m=6), A281459 (m=7), this sequence (m=8).

Programs

  • Mathematica
    CoefficientList[Series[Product[(1 + x^(8*k - 1)) * (1 + x^(8*k - 7)) , {k, 1, 81}], {x, 0, 81}], x] (* Indranil Ghosh, Mar 20 2017 *)
  • PARI
    Vec(prod(k=1, 81, (1 + x^(8*k - 1)) * (1 + x^(8*k - 7))) + O(x^82)) \\ Indranil Ghosh, Mar 20 2017

Formula

G.f.: Product_{k>0} (1 + x^(8*k - 1)) * (1 + x^(8*k - 7)).
a(n) ~ exp(sqrt(n/3)*Pi/2) / (4*3^(1/4)*n^(3/4)) * (1 + (11*Pi/(192*sqrt(3)) - 3*sqrt(3)/(4*Pi))/sqrt(n)). - Vaclav Kotesovec, Mar 20 2017
Previous Showing 31-40 of 43 results. Next