cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 184 results. Next

A350842 Number of integer partitions of n with no difference -2.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 16, 24, 30, 40, 54, 69, 89, 118, 146, 187, 239, 297, 372, 468, 575, 711, 880, 1075, 1314, 1610, 1947, 2359, 2864, 3438, 4135, 4973, 5936, 7090, 8466, 10044, 11922, 14144, 16698, 19704, 23249, 27306, 32071, 37639, 44019, 51457, 60113
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2022

Keywords

Examples

			The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (211)   (41)     (51)      (52)
                    (1111)  (221)    (222)     (61)
                            (2111)   (321)     (322)
                            (11111)  (411)     (511)
                                     (2211)    (2221)
                                     (21111)   (3211)
                                     (111111)  (4111)
                                               (22111)
                                               (211111)
                                               (1111111)
		

Crossrefs

Heinz number rankings are in parentheses below.
The version for no difference 0 is A000009.
The version for subsets of prescribed maximum is A005314.
The version for all differences < -2 is A025157, non-strict A116932.
The version for all differences > -2 is A034296, strict A001227.
The opposite version is A072670.
The version for no difference -1 is A116931 (A319630), strict A003114.
The multiplicative version is A350837 (A350838), strict A350840.
The strict case is A350844.
The complement for quotients is counted by A350846 (A350845).
A000041 = integer partitions.
A027187 = partitions of even length.
A027193 = partitions of odd length (A026424).
A323092 = double-free partitions (A320340), strict A120641.
A325534 = separable partitions (A335433).
A325535 = inseparable partitions (A335448).
A350839 = partitions with a gap and conjugate gap (A350841).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[Differences[#],-2]&]],{n,0,30}]

A122129 Expansion of 1 + Sum_{k>0} x^k^2/((1-x)(1-x^2)...(1-x^(2k))).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 9, 12, 15, 19, 24, 30, 37, 46, 57, 69, 84, 102, 123, 148, 177, 211, 252, 299, 353, 417, 491, 576, 675, 789, 920, 1071, 1244, 1442, 1670, 1929, 2224, 2562, 2946, 3381, 3876, 4437, 5072, 5791, 6602, 7517, 8551, 9714, 11021, 12493, 14145
Offset: 0

Views

Author

Michael Somos, Aug 21 2006

Keywords

Comments

Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.
a(n) = number of SE partitions of n, for n >= 1; see A237981. - Clark Kimberling, Mar 19 2014
In Watson 1937 page 275 he writes "Psi_0(1,q) = prod_1^oo (1+q^{2n}) G(q^8)" so this is the expansion in powers of q^2. - Michael Somos, Jun 28 2015
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Rogers-Ramanujan functions: G(x) (see A003114), H(x) (A003106).
From Gus Wiseman, Feb 19 2022: (Start)
This appears to be the number of integer partitions of n with every other pair of adjacent parts strictly decreasing, as in the pattern a > b >= c > d >= e for a partition (a, b, c, d, e). For example, the a(1) = 1 through a(9) = 12 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(21) (31) (32) (42) (43) (53) (54)
(211) (41) (51) (52) (62) (63)
(311) (321) (61) (71) (72)
(411) (322) (422) (81)
(421) (431) (432)
(511) (521) (522)
(611) (531)
(3221) (621)
(711)
(4221)
(32211)
The even-length case is A351008. The odd-length case appears to be A122130. Swapping strictly and weakly decreasing relations appears to give A122135. The alternately unequal and equal case is A351006, strict A035457, opposite A351005, even-length A351007. (End)
Wiseman's first conjecture above was proved by Gordon, Theorem 7. For two other combinatorial interpretations of this sequence see Connor, Proposition 1. - Peter Bala, Dec 22 2024

Examples

			Clark Kimberling's SE partition comment, n=6: the 5 SE partitions are [1,1,1,1,1,1] from the partitions 6 and 1^6; [1,1,1,2,1] from 5,1 and 2,1^4; [1,1,3,1] from 4,2 and 2^2,1^2; [2,3,1] from 3,2,1 and 3^2 and 2^3; and [1,2,2,1] from 4,1^2 and 3,1^3. - _Wolfdieter Lang_, Mar 20 2014
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 7*x^7 + 9*x^8 + ...
G.f. = 1/q + q^39 + q^79 + 2*q^119 + 3*q^159 + 4*q^199 + 5*q^239 + ...
		

References

  • G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.7). MR0858826 (88b:11063)
  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(a), p. 591.

Crossrefs

Programs

  • Maple
    f:=n->1/mul(1-q^(20*k+n),k=0..20);
    f(1)*f(3)*f(4)*f(5)*f(7)*f(9)*f(11)*f(13)*f(15)*f(16)*f(17)*f(19);
    series(%,q,200); seriestolist(%); # N. J. A. Sloane, Mar 19 2012.
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*[0, 1, 0,
           1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1]
          [1+irem(d, 20)], d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Jul 12 2013
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Sum[d*{0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1}[[1+Mod[d, 20]]], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jan 10 2014, after Alois P. Heinz *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^k^2 / QPochhammer[ x, x, 2 k], {k, 0, Sqrt @ n}], {x, 0, n}]]; (* Michael Somos, Jun 28 2015 *)
    a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x, x^2] QPochhammer[ x^4, x^20] QPochhammer[ x^16, x^20]), {x, 0, n}]; (* Michael Somos, Jun 28 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, sqrtint(n), x^k^2 / prod(i=1, 2*k, 1 - x^i, 1 + x * O(x^(n-k^2)))), n))};

Formula

Euler transform of period 20 sequence [ 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, ...].
Expansion of f(-x^2) * f(-x^20) / (f(-x) * f(-x^4,-x^16)) in powers of x where f(,) is the Ramanujan general theta function.
Expansion of f(x^3, x^7) / f(-x, -x^4) in powers of x where f(,) is the Ramanujan general theta function. - Michael Somos, Jun 28 2015
Expansion of f(-x^8, -x^12) / psi(-x) in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Jun 28 2015
Expansion of G(x^4) / chi(-x) in powers of x where chi() is a Ramanujan theta function and G() is a Rogers-Ramanujan function. - Michael Somos, Jun 28 2015
G.f.: Sum_{k>=0} x^k^2 / ((1 - x) * (1 - x^2) ... (1 - x^(2*k))).
G.f.: 1 / (Product_{k>0} (1 - x^(2*k-1)) * (1 - x^(20*k-4)) * (1 - x^(20*k-16))).
Let f(n) = 1/Product_{k >= 0} (1 - q^(20k+n)). Then g.f. is f(1)*f(3)*f(4)*f(5)*f(7)*f(9)*f(11)*f(13)*f(15)*f(16)*f(17)*f(19). - N. J. A. Sloane, Mar 19 2012
a(n) is the number of partitions of n into parts that are either odd or == +-4 (mod 20). - Michael Somos, Jun 28 2015
a(n) ~ (3+sqrt(5))^(1/4) * exp(Pi*sqrt(2*n/5)) / (4*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Aug 30 2015

A342191 Numbers with no adjacent prime indices having quotient < 1/2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 21, 23, 24, 25, 27, 29, 30, 31, 32, 35, 36, 37, 41, 42, 43, 45, 47, 48, 49, 53, 54, 55, 59, 60, 61, 63, 64, 65, 67, 71, 72, 73, 75, 77, 79, 81, 83, 84, 89, 90, 91, 96, 97, 101, 103, 105, 107, 108, 109
Offset: 1

Views

Author

Gus Wiseman, Mar 05 2021

Keywords

Comments

Also Heinz numbers of integer partitions with no adjacent parts having quotient > 2 (counted by A342094). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}            18: {1,2,2}         42: {1,2,4}
      2: {1}           19: {8}             43: {14}
      3: {2}           21: {2,4}           45: {2,2,3}
      4: {1,1}         23: {9}             47: {15}
      5: {3}           24: {1,1,1,2}       48: {1,1,1,1,2}
      6: {1,2}         25: {3,3}           49: {4,4}
      7: {4}           27: {2,2,2}         53: {16}
      8: {1,1,1}       29: {10}            54: {1,2,2,2}
      9: {2,2}         30: {1,2,3}         55: {3,5}
     11: {5}           31: {11}            59: {17}
     12: {1,1,2}       32: {1,1,1,1,1}     60: {1,1,2,3}
     13: {6}           35: {3,4}           61: {18}
     15: {2,3}         36: {1,1,2,2}       63: {2,2,4}
     16: {1,1,1,1}     37: {12}            64: {1,1,1,1,1,1}
     17: {7}           41: {13}            65: {3,6}
		

Crossrefs

The multiplicative version (squared instead of doubled) for prime factors is A253784.
These are the Heinz numbers of the partitions counted by A342094.
A003114 counts partitions with adjacent parts differing by more than 1.
A034296 counts partitions with adjacent parts differing by at most 1.
A038548 counts inferior or superior divisors, listed by A161906 or A161908.

Programs

  • Mathematica
    Select[Range[100],Min[Divide@@@Partition[PrimePi/@First/@FactorInteger[#],2,1]]>=1/2&]

A003116 Expansion of the reciprocal of the g.f. defining A039924.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 23, 41, 72, 127, 222, 388, 677, 1179, 2052, 3569, 6203, 10778, 18722, 32513, 56455, 98017, 170161, 295389, 512755, 890043, 1544907, 2681554, 4654417, 8078679, 14022089, 24337897, 42242732, 73319574, 127258596, 220878683
Offset: 0

Views

Author

Keywords

Comments

Conjecture: a(n) is the number of compositions p(1) + p(2) + ... + p(m) = n with p(i)-p(i-1) <= 1, see example; cf. A034297. - Vladeta Jovovic, Feb 09 2004
Row sums and central terms of the triangle in A168396: a(n) = A168396(2*n+1,n) and for n > 0: a(n) = Sum_{k=1..n} A168396(n,k). - Reinhard Zumkeller, Sep 13 2013
Former definition was "Expansion of reciprocal of a determinant." - N. J. A. Sloane, Aug 10 2018
From Doron Zeilberger, Aug 10 2018: (Start)
Jovovic's conjecture can be proved as follows. There is a sign-changing involution defined on pairs (L1,L2) where L1 is a partition with difference >= 2 between consecutive parts and L2 is the number of compositions described by Jovovic, with the sign (-1)^(Number of parts of L1).
Let a be the largest part of L1 and b the largest part of L2. If b-a>=2 then move b from L2 to the top of L1, otherwise move a to the top of L2.
Since this is an involution and it changes the sign (the number of parts of L1 changes parity) this proves it, since the g.f. of A039924 is exactly the signed-enumeration of the set given by L1. (End)

Examples

			From _Joerg Arndt_, Dec 29 2012: (Start)
There are a(6)=23 compositions p(1)+p(2)+...+p(m)=6 such that p(k)-p(k-1) <= 1:
[ 1]  [ 1 1 1 1 1 1 ]
[ 2]  [ 1 1 1 1 2 ]
[ 3]  [ 1 1 1 2 1 ]
[ 4]  [ 1 1 2 1 1 ]
[ 5]  [ 1 1 2 2 ]
[ 6]  [ 1 2 1 1 1 ]
[ 7]  [ 1 2 1 2 ]
[ 8]  [ 1 2 2 1 ]
[ 9]  [ 1 2 3 ]
[10]  [ 2 1 1 1 1 ]
[11]  [ 2 1 1 2 ]
[12]  [ 2 1 2 1 ]
[13]  [ 2 2 1 1 ]
[14]  [ 2 2 2 ]
[15]  [ 2 3 1 ]
[16]  [ 3 1 1 1 ]
[17]  [ 3 1 2 ]
[18]  [ 3 2 1 ]
[19]  [ 3 3 ]
[20]  [ 4 1 1 ]
[21]  [ 4 2 ]
[22]  [ 5 1 ]
[23]  [ 6 ]
Replacing the condition with p(k)-p(k-1) <= 0 gives integer partitions.
(End)
		

References

  • D. H. Lehmer, Combinatorial and cyclotomic properties of certain tridiagonal matrices. Proceedings of the Fifth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1974), pp. 53-74. Congressus Numerantium, No. X, Utilitas Math., Winnipeg, Man., 1974. MR0441852.
  • H. P. Robinson, Letter to N. J. A. Sloane, Nov 19 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003116 n = a168396 (2 * n + 1) n  -- Reinhard Zumkeller, Sep 13 2013
  • Mathematica
    max = 35; f[x_] := 1/Sum[x^k^2*((-1)^k/Product[1 - x^i, {i, 1, k}]), {k, 0, Floor[Sqrt[max]]}]; CoefficientList[ Series[f[x], {x, 0, max}], x](* Jean-François Alcover, Jun 12 2012, after PARI *)
    b[n_, k_] := b[n, k] = Expand[If[n == 0, 1, x*
         Sum[b[n - j, j], {j, 1, Min[n, k + 1]}]]];
    a[n_] := Total@CoefficientList[b[n, n], x];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Apr 14 2022, after Alois P. Heinz in A168443 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(1/sum(k=0,sqrtint(n),x^k^2/prod(i=1,k,x^i-1,1+x*O(x^n))),n))
    

Formula

G.f.: 1/(Sum_{k>=0} x^(k^2)(-1)^k/(Product_{i=1..k} 1-x^i)).
a(n) ~ c * d^n, where d = 1/A347901 = 1.73566282453034742565826074971966853... and c = 0.9180565304926754125870866477349969555868577236908640010903420353... - Vaclav Kotesovec, Nov 01 2021

Extensions

Definition revised by N. J. A. Sloane, Aug 10 2018 at the suggestion of Doron Zeilberger

A384905 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with k maximal anti-runs (decreasing by more than 1).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 5, 2, 1, 0, 0, 0, 0, 0, 0, 0, 6, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 7, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Jun 21 2025

Keywords

Examples

			The T(10,2) = 3 strict partitions with 2 maximal anti-runs are: (7,2,1), (5,4,1), (5,3,2).
Triangle begins:
  1
  0  1
  0  1  0
  0  1  1  0
  0  2  0  0  0
  0  2  1  0  0  0
  0  3  0  1  0  0  0
  0  3  2  0  0  0  0  0
  0  4  2  0  0  0  0  0  0
  0  5  2  1  0  0  0  0  0  0
  0  6  3  0  1  0  0  0  0  0  0
  0  7  4  1  0  0  0  0  0  0  0  0
  0  9  3  3  0  0  0  0  0  0  0  0  0
		

Crossrefs

Row sums are A000009.
Column k = 1 is A003114.
For subsets instead of strict integer partitions see A053538, A119900, A210034.
For runs instead of anti-runs we have A116674, for subsets A034839.
This is the strict case of A268193.
A384175 counts subsets with all distinct lengths of maximal runs, complement A384176.
A384877 gives lengths of maximal anti-runs in binary indices, firsts A384878.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[Split[#,#1!=#2+1&]]==k&]],{n,0,10},{k,0,n}]

A325160 Products of distinct, non-consecutive primes. Squarefree numbers not divisible by any two consecutive primes.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 11, 13, 14, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 110, 111, 113, 115, 118, 119
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions into distinct non-consecutive parts (counted by A003114). The nonsquarefree case is A319630, which gives the Heinz numbers of integer partitions with no consecutive parts (counted by A116931).
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 6, 52, 515, 5146, 51435, 514416, 5144232, 51442384, ... . Apparently, the asymptotic density of this sequence exists and equals 0.51442... . - Amiram Eldar, Sep 24 2022

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   5: {3}
   7: {4}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  17: {7}
  19: {8}
  21: {2,4}
  22: {1,5}
  23: {9}
  26: {1,6}
  29: {10}
  31: {11}
  33: {2,5}
  34: {1,7}
  37: {12}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Min@@Differences[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]>1&]
  • PARI
    isok(k) = {if (issquarefree(k), my(v = apply(primepi, factor(k)[,1])); ! #select(x->(v[x+1]-v[x] == 1), [1..#v-1]));} \\ Michel Marcus, Jan 09 2021

A117144 Partitions of n in which each part k occurs at least k times.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 6, 8, 9, 10, 12, 15, 16, 19, 21, 25, 28, 32, 34, 41, 46, 51, 55, 64, 70, 79, 86, 97, 106, 119, 129, 146, 159, 175, 190, 214, 232, 256, 277, 306, 334, 367, 394, 434, 472, 515, 556, 607, 654, 714, 770, 836, 901, 978, 1048, 1140, 1226, 1322
Offset: 0

Views

Author

Emeric Deutsch, Mar 06 2006

Keywords

Comments

The Heinz numbers of these integer partitions are given by A324525. - Gus Wiseman, Mar 09 2019

Examples

			a(9)=5 because we have [3,3,3], [2,2,2,2,1], [2,2,2,1,1,1], [2,2,1,1,1,1,1] and [1,1,1,1,1,1,1,1,1].
From _Gus Wiseman_, Mar 09 2019: (Start)
The a(1) = 1 through a(9) = 5 integer partitions:
  1  11  111  22    221    222     2221     2222      333
              1111  11111  2211    22111    22211     22221
                           111111  1111111  221111    222111
                                            11111111  2211111
                                                      111111111
(End)
		

Crossrefs

Programs

  • Maple
    g:=product((1-x^k+x^(k^2))/(1-x^k),k=1..100): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=0..66);
    # second Maple program:
    b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +add(b(n-i*j, i-1), j=i..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..80);  # Alois P. Heinz, Dec 28 2016
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + Sum[b[n-i*j, i-1], {j, i, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Feb 03 2017, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],And@@Table[Count[#,i]>=i,{i,Union[#]}]&]],{n,0,30}] (* Gus Wiseman, Mar 09 2019 *)
    nmax = 100; CoefficientList[Series[Product[(1-x^k+x^(k^2))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 28 2024 *)

Formula

G.f.: Product_{k>=1} (1-x^k+x^(k^2))/(1-x^k).

A114638 Number of partitions of n such that number of parts is equal to the sum of parts counted without multiplicities.

Original entry on oeis.org

1, 1, 0, 0, 2, 1, 1, 0, 2, 2, 3, 5, 5, 6, 9, 7, 8, 14, 12, 16, 21, 28, 32, 43, 47, 61, 68, 84, 89, 109, 126, 140, 170, 198, 227, 261, 323, 362, 427, 501, 581, 658, 794, 880, 1036, 1175, 1355, 1526, 1776, 1985, 2281, 2588, 2943, 3312, 3799, 4271, 4852, 5497
Offset: 0

Views

Author

Vladeta Jovovic, Feb 18 2006

Keywords

Comments

The Heinz numbers of these integer partitions are given by A324570. - Gus Wiseman, Mar 09 2019

Examples

			a(10) = 3 because we have [5,1,1,1,1,1], [3,3,3,1] and [3,2,2,1,1,1].
From _Gus Wiseman_, Mar 09 2019: (Start)
The a(1) = 1 through a(12) = 5 integer partitions (empty columns not shown):
  1  22   221  3111  3311   333     3331    32222    33222
     211             41111  321111  322111  44111    322221
                                    511111  322211   332211
                                            332111   4221111
                                            4211111  6111111
(End)
		

Crossrefs

Cf. A003114, A006141, A039900, A047993, A064174, A066328, A243149 (the same for compositions).
Cf. A116861 (number of partitions of n having a given sum of distinct parts).

Programs

  • Maple
    a:=proc(n) local P,c,j,S: with(combinat): P:=partition(n): c:=0: for j from 1 to nops(P) do S:=convert(P[j],set): if nops(P[j])=sum(S[i],i=1..nops(S)) then c:=c+1 else c:=c fi: c: od: end: seq(a(n), n=0..35); # Emeric Deutsch, Mar 01 2006
  • Mathematica
    a[n_] := Module[{P, c, j, S}, P = IntegerPartitions[n]; c = 0; For[j = 1, j <= Length[P], j++, S = Union[P[[j]]]; If[Length[P[[j]]] == Total[S],  c++] ]; c];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 07 2018, after Emeric Deutsch *)
  • PARI
    apply( A114638(n,s=0)={forpart(p=n,#p==vecsum(Set(p))&&s++); s}, [0..50]) \\ M. F. Hasler, Oct 27 2019

Extensions

More terms from Emeric Deutsch, Mar 01 2006

A320347 Number of partitions of n into distinct parts (a_1, a_2, ... , a_m) (a_1 > a_2 > ... > a_m and Sum_{k=1..m} a_k = n) such that a1 - a2, a2 - a3, ..., a_{m-1} - a_m are different.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 5, 6, 6, 9, 11, 10, 15, 18, 19, 24, 31, 29, 40, 44, 51, 56, 72, 69, 90, 97, 114, 125, 154, 151, 192, 207, 237, 255, 304, 314, 377, 401, 457, 493, 573, 596, 698, 750, 845, 905, 1034, 1104, 1255, 1354, 1507, 1624, 1817, 1955, 2178, 2357, 2605, 2794, 3077, 3380
Offset: 1

Views

Author

Seiichi Manyama, Oct 11 2018

Keywords

Comments

In other words, a(n) is the number of strict integer partitions of n with distinct first differences. - Gus Wiseman, Mar 25 2021

Examples

			n = 9
[9]        ooooooooo
------------------------------------
[8, 1]      *******o  a_1 - a_2 = 7.
            oooooooo
------------------------------------
[7, 2]       *****oo  a_1 - a_2 = 5.
             ooooooo
------------------------------------
[6, 3]        ***ooo  a_1 - a_2 = 3.
              oooooo
------------------------------------
[6, 2, 1]         *o  a_2 - a_3 = 1.
              ****oo  a_1 - a_2 = 4.
              oooooo
------------------------------------
[5, 4]         *oooo  a_1 - a_2 = 1.
               ooooo
------------------------------------
a(9) = 6.
		

Crossrefs

The equal instead of distinct version is A049980.
The non-strict version is A325325 (ranking: A325368).
The non-strict ordered version is A325545.
The version for first quotients is A342520 (non-strict: A342514).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Differences[#]&]],{n,0,30}] (* Gus Wiseman, Mar 27 2021 *)

A122134 Expansion of Sum_{k>=0} x^(k^2+k)/((1-x)(1-x^2)...(1-x^(2k))).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 11, 16, 18, 24, 28, 36, 42, 54, 62, 78, 91, 112, 130, 159, 184, 222, 258, 308, 356, 424, 488, 576, 664, 778, 894, 1044, 1196, 1389, 1590, 1838, 2098, 2419, 2754, 3162, 3596, 4114, 4668, 5328, 6032, 6864, 7760, 8806, 9936, 11252
Offset: 0

Views

Author

Michael Somos, Aug 21 2006, Oct 10 2007

Keywords

Comments

Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.
In Watson 1937 page 275 he writes "Psi_0(q^{1/2},q) = prod_1^oo (1+q^{2n}) G(-q^2)" so this is the expansion in powers of q^2. - Michael Somos, Jun 29 2015
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106).
From Gus Wiseman, Feb 26 2022: (Start)
Conjecture: Also the number of even-length integer partitions y of n such that y_i != y_{i+1} for all even i. For example, the a(2) = 1 through a(9) = 7 partitions are:
(11) (21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(51) (61) (62) (72)
(2211) (3211) (71) (81)
(3311) (3321)
(4211) (4311)
(5211)
This appears to be the even-length version of A122135.
The odd-length version is A351595.
For Wiseman's conjecture above and three other partition-theoretic interpretations of this sequence see Connor, Proposition 3. - Peter Bala, Jan 02 2025

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 6*x^8 + 7*x^9 + ...
G.f. = q + q^81 + q^121 + 2*q^161 + 2*q^201 + 4*q^241 + 4*q^281 + ...
		

References

  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(c), p. 591.
  • G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.6). MR0858826 (88b:11063)

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(k^2 + k) / QPochhammer[ x, x, 2 k], {k, 0, (Sqrt[ 4 n + 1] - 1) / 2}], {x, 0, n}]]; (* Michael Somos, Jun 29 2015 *)
    a[ n_] := SeriesCoefficient [ 1 / (QPochhammer[ x^4, -x^5] QPochhammer[ -x, -x^5] QPochhammer[ x, x^2]), {x, 0, n}]; (* Michael Somos, Jun 29 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2, -x^5] QPochhammer[ -x^3, -x^5] QPochhammer[ -x^5] / EllipticTheta[ 4, 0, x^2], {x, 0, n}]; (* Michael Somos, Jun 29 2015 *)
    nmax = 50; CoefficientList[Series[Product[1/((1 - x^(20*k+2))*(1 - x^(20*k+3))*(1 - x^(20*k+4))*(1 - x^(20*k+5))*(1 - x^(20*k+6))*(1 - x^(20*k+7))*(1 - x^(20*k+13))*(1 - x^(20*k+14))*(1 - x^(20*k+15))*(1 - x^(20*k+16))*(1 - x^(20*k+17)) *(1 - x^(20*k+18))), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 12 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(4*n + 1) - 1)\2, x^(k^2 + k) / prod(i=1, 2*k, 1 - x^i, 1 + x * O(x^(n -k^2-k)))), n))};

Formula

Euler transform of period 20 sequence [ 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, ...].
Expansion of f(x^4, x^6) / f(-x^2, -x^3) in powers of x where f(, ) is the Ramanujan general theta function. - Michael Somos, Jun 29 2015
Expansion of f(-x^2, x^3) / phi(-x^2) in powers of x where phi() is a Ramanujan theta function. - Michael Somos, Jun 29 2015
Expansion of G(-x) / chi(-x) in powers of x where chi() is a Ramanujan theta function and G() is a Rogers-Ramanujan function. - Michael Somos, Jun 29 2015
G.f.: Sum_{k>=0} x^(k^2 + k) / ((1 - x) * (1 - x^2) * ... * (1 - x^(2*k))).
Expansion of f(-x, -x^9) * f(-x^8, -x^12) / ( f(-x) * f(-x^20) ) in powers of x where f(, ) is the Ramanujan general theta function.
a(n) = number of partitions of n into parts that are each either == 2, 3, ..., 7 (mod 20) or == 13, 14, ..., 18 (mod 20). - Michael Somos, Jun 29 2015 [corrected by Vaclav Kotesovec, Nov 12 2016]
a(n) ~ (3 - sqrt(5))^(1/4) * exp(Pi*sqrt(2*n/5)) / (4*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Nov 12 2016
Previous Showing 31-40 of 184 results. Next