cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A180247 Prime Brier numbers: primes p such that for all k >= 1 the numbers p*2^k + 1 and p*2^k - 1 are composite.

Original entry on oeis.org

10439679896374780276373, 21444598169181578466233, 105404490005793363299729, 178328409866851219182953, 239365215362656954573813, 378418904967987321998467, 422280395899865397194393, 474362792344501650476113, 490393518369132405769309
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 19 2010

Keywords

Comments

WARNING: These are just the smallest examples known - there may be smaller ones. Even the first term is uncertain. - N. J. A. Sloane, Jun 20 2017
There are no prime Brier numbers below 10^10. - Arkadiusz Wesolowski, Jan 12 2011
It is a conjecture that every such number has more than 11 digits. In 2011 I have calculated that for any prime p < 10^11 there is a k such that either p*2^k + 1 or p*2^k - 1 has all its prime factors greater than 1321. - Arkadiusz Wesolowski, Feb 03 2016
The first term was found by Dan Ismailescu and Peter Seho Park and the next two by Christophe Clavier (see below). See also A076335. - N. J. A. Sloane, Jan 03 2014
a(4)-a(9) computed in 2017 by the author.

Crossrefs

Extensions

Entry revised by N. J. A. Sloane, Jan 03 2014
Entry revised by Arkadiusz Wesolowski, May 29 2017

A050918 Woodall primes: primes of form k*2^k-1.

Original entry on oeis.org

7, 23, 383, 32212254719, 2833419889721787128217599, 195845982777569926302400511, 4776913109852041418248056622882488319, 1307960347852357218937346147315859062783, 225251798594466661409915431774713195745814267044878909733007331390393510002687
Offset: 1

Views

Author

N. J. A. Sloane, Dec 30 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[n 2^n - 1, {n, 300}], PrimeQ] (* Harvey P. Dale, Jul 12 2012 *)
  • PARI
    for(n=2,999,ispseudoprime(p=n*2^n-1)&&print1(p",")) \\ M. F. Hasler, May 10 2017
    
  • Python
    from sympy import isprime
    def auptok(limit):
        return list(filter(isprime, (k*2**k-1 for k in range(1, limit+1))))
    print(auptok(1000)) # Michael S. Branicky, Jul 23 2021

Formula

a(n) = A002234(n)*2^A002234(n) - 1. - M. F. Hasler, May 10 2017

A242273 Numbers n such that n*2^n - 1 is a semiprime.

Original entry on oeis.org

5, 7, 8, 9, 10, 12, 18, 20, 25, 32, 37, 39, 72, 80, 85, 90, 97, 142, 150, 159, 163, 168, 169, 186, 192, 211, 231, 272, 305, 349, 363, 369, 375, 463, 465, 615, 668, 672, 789, 797, 817, 859, 908, 938, 951, 1092, 1123
Offset: 1

Views

Author

Vincenzo Librandi, May 12 2014

Keywords

Comments

The semiprimes of this form are: 159, 895, 2047, 4607, 10239, ... (A242115).
a(48) >= 1152. - Hugo Pfoertner, Jul 29 2019

Crossrefs

Cf. numbers n such that n*k^n - 1 is semiprime: this sequence (k=2), A242274 (k=3), A242335 (k=4), A242336 (k=5), A242337 (k=6), A242338 (k=7), A242339 (k=8), A242340 (k=9), A242341 (k=10).

Programs

  • Magma
    IsSemiprime:=func; [n: n in [2..1000] | IsSemiprime(s) where s is n*2^n-1];
  • Mathematica
    Select[Range[1000], PrimeOmega[# 2^# - 1]==2&]

Formula

A003261(a(n)) = A242115(n). - Amiram Eldar, Nov 27 2019

Extensions

a(28)-a(29) from Luke March, Aug 05 2015
a(30)-a(42) from Carl Schildkraut, Aug 18 2015
Corrected and extended by Luke March, Sep 01 2015
Missing terms a(26)-a(27) inserted by Amiram Eldar, Nov 27 2019

A099035 a(n) = (n+1)*2^(n-1) - 1.

Original entry on oeis.org

1, 5, 15, 39, 95, 223, 511, 1151, 2559, 5631, 12287, 26623, 57343, 122879, 262143, 557055, 1179647, 2490367, 5242879, 11010047, 23068671, 48234495, 100663295, 209715199, 436207615, 905969663, 1879048191, 3892314111, 8053063679
Offset: 1

Author

Ralf Stephan, Sep 28 2004

Keywords

Comments

Row sums of triangle A135852. - Gary W. Adamson, Dec 01 2007
Binomial transform of [1, 4, 6, 8, 10, 12, 14, 16, ...]. Equals A128064 * A000225, (A000225 starting 1, 3, 7, 15, ...). - Gary W. Adamson, Dec 28 2007

Crossrefs

First differences of A066524.

Programs

Formula

a(n) = A057711(n+1) - 1 = A058966(n+3)/2 = (A087323(n)-1)/2 = (A074494(n+1)-2)/3 = (A003261(n+1)-3)/4 = A036289(n+1)/4 - 1, n>0.
a(n) = A131056(n+1) - 2. - Juri-Stepan Gerasimov, Oct 02 2011
From Colin Barker, Mar 23 2012: (Start)
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3).
G.f.: x*(1-2*x^2)/((1-x)*(1-2*x)^2). (End)
E.g.f.: ((2*x+1)*exp(2*x) - 2*exp(x) + 1)/2. - G. C. Greubel, Dec 31 2017

A056041 Value for which b(a(n))=0 when b(2)=n and b(k+1) is calculated by writing b(k) in base k, reading this as being written in base k+1 and then subtracting 1.

Original entry on oeis.org

2, 3, 5, 7, 23, 63, 383, 2047
Offset: 0

Author

Henry Bottomley, Aug 04 2000

Keywords

Comments

a(8)=3*2^(3*2^27+27)-1 which is more than 10^(10^8) and equal to the final base of the Goodstein sequence starting with g(2)=4; indeed, apart from the initial term, the sequence starting with b(2)=8 is identical to the Goodstein sequence starting with g(2)=4. The initial terms of a(n) [2, 3, 5 and 7] are equal to the initial terms of the equivalent final bases of Goodstein sequences starting at the same points. a(9)=2^(2^(2^70+70)+2^70+70)-1 which is more than 10^(10^(10^20)).
It appears that if n is even then a(n) is one less than three times a power of two, while if n is odd then a(n) is one less than a power of two.
Comment from John Tromp, Dec 02 2004: The sequence 2,3,5,7,3*2^402653211 - 1, ... gives the final base of the Goodstein sequence starting with n. This is an example of a very rapidly growing function that is total (i.e. defined on any input), although this fact is not provable in first-order Peano Arithmetic. See the links for definitions. This grows even faster than the Friedman sequence described in the Comments to A014221.
In fact there are two related sequences: (i) The Goodstein function l(n) = number of steps for the Goodstein sequence to reach 0 when started with initial term n >= 0: 0, 1, 3, 5, 3*2^402653211 - 3, ...; and (ii) the same sequence + 2: 2, 3, 5, 7, 3*2^402653211 - 1, ..., which is the final base reached. Both grow too rapidly to have their own entries in the database.
Related to the hereditary base sequences - see cross-reference lines.
This sequence gives the final base of the weak Goodstein sequence starting with n; compare A266203, the length of the weak Goodstein sequence. a(n) = A266203(n) + 2.

Examples

			a(3)=7 because starting with b(2)=3=11 base 2, we get b(3)=11-1 base 3=10 base 3=3, b(4)=10-1 base 4=3, b(5)=3-1 base 5=2, b(6)=2-1 base 6=1 and b(7)=1-1 base 7=0.
		

Crossrefs

Equals A266203 + 2.
Steps of strong Goodstein sequences: A056004, A057650, A059934, A059935, A059936, A271977.
Strong Goodstein sequences: A215409, A056193, A266204, A222117, A059933.
Woodall numbers: A003261.

A060416 a(n) = n*4^n - 1, with a(0) = 1.

Original entry on oeis.org

1, 3, 31, 191, 1023, 5119, 24575, 114687, 524287, 2359295, 10485759, 46137343, 201326591, 872415231, 3758096383, 16106127359, 68719476735, 292057776127, 1236950581247, 5222680231935, 21990232555519, 92358976733183, 387028092977151, 1618481116086271, 6755399441055743
Offset: 0

Author

Jason Earls, Apr 05 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - 6 x + 28 x^2 - 32 x^3)/((1 - x) (1 - 4 x)^2), {x, 0, 21}], x] (* Michael De Vlieger, Jan 04 2020 *)
  • PARI
    a(n) = { abs(n*4^n - 1) } \\ Harry J. Smith, Jul 04 2009

Formula

G.f.: (1 - 6*x + 28*x^2 - 32*x^3)/((1 - x)*(1 - 4*x)^2). - Colin Barker, Apr 22 2012
From Elmo R. Oliveira, May 05 2025: (Start)
E.g.f.: 2 + exp(x)*(4*x*exp(3*x) - 1).
a(n) = A018215(n) - 1 for n >= 1.
a(n) = 9*a(n-1) - 24*a(n-2) + 16*a(n-3) for n > 3. (End)

A064751 a(n) = n*5^n - 1.

Original entry on oeis.org

4, 49, 374, 2499, 15624, 93749, 546874, 3124999, 17578124, 97656249, 537109374, 2929687499, 15869140624, 85449218749, 457763671874, 2441406249999, 12969970703124, 68664550781249, 362396240234374, 1907348632812499, 10013580322265624, 52452087402343749, 274181365966796874
Offset: 1

Author

N. J. A. Sloane, Oct 19 2001

Keywords

Crossrefs

Programs

  • Magma
    [n*5^n - 1: n in [1..30]]; // Vincenzo Librandi, Jun 21 2018
  • Mathematica
    Table[n*5^n-1,{n,20}] (* or *) LinearRecurrence[{11,-35,25},{4,49,374},20] (* Harvey P. Dale, Jun 25 2017 *)
    CoefficientList[Series[(4 + 5 x - 25 x^2) / ((1 - 5 x)^2 (1 - x)), {x, 0, 33}], x] (* Vincenzo Librandi, Jun 21 2018 *)
  • PARI
    a(n) = { n*5^n - 1 } \\ Harry J. Smith, Sep 24 2009
    

Formula

G.f.: x*(4 + 5*x - 25*x^2)/((1 - 5*x)^2*(1 - x)). - Vincenzo Librandi, Jun 21 2018
a(n) = A036291(n) - 1. - Michel Marcus, Jun 21 2018
From Elmo R. Oliveira, May 05 2025: (Start)
E.g.f.: 1 + exp(x)*(5*x*exp(4*x) - 1).
a(n) = 11*a(n-1) - 35*a(n-2) + 25*a(n-3) for n > 3. (End)

A064752 a(n) = n*6^n - 1.

Original entry on oeis.org

5, 71, 647, 5183, 38879, 279935, 1959551, 13436927, 90699263, 604661759, 3990767615, 26121388031, 169789022207, 1097098297343, 7052774768639, 45137758519295, 287753210560511, 1828079220031487, 11577835060199423, 73123168801259519, 460675963447934975, 2895677484529876991
Offset: 1

Author

N. J. A. Sloane, Oct 19 2001

Keywords

Crossrefs

Programs

  • Magma
    [ n*6^n-1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
  • Mathematica
    Table[n 6^n-1,{n,25}] (* or *) LinearRecurrence[{13,-48,36},{5,71,647}, 25] (* Harvey P. Dale, May 25 2011 *)

Formula

From Harvey P. Dale, May 25 2011: (Start)
a(n) = 13*a(n-1) - 48*a(n-2) + 36*a(n-3); a(1)=5, a(2)=71, a(3)=647.
G.f.: 6*x/(1-6*x)^2 + x/(x-1). (End)
From Elmo R. Oliveira, May 05 2025: (Start)
E.g.f.: 1 + exp(x)*(6*x*exp(5*x) - 1).
a(n) = A036292(n) - 1. (End)

A064754 a(n) = n*8^n - 1.

Original entry on oeis.org

7, 127, 1535, 16383, 163839, 1572863, 14680063, 134217727, 1207959551, 10737418239, 94489280511, 824633720831, 7146825580543, 61572651155455, 527765581332479, 4503599627370495, 38280596832649215, 324259173170675711, 2738188573441261567, 23058430092136939519
Offset: 1

Author

N. J. A. Sloane, Oct 19 2001

Keywords

Crossrefs

Programs

  • Magma
    [ n*8^n-1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
  • Mathematica
    Table[n*8^n-1,{n,20}] (* or *) LinearRecurrence[{17,-80,64},{7,127,1535},20] (* Harvey P. Dale, May 20 2013 *)

Formula

G.f.: x*(64*x^2 - 8*x - 7)/((x-1)*(8*x-1)^2). - Colin Barker, Oct 15 2012
a(n) = 17*a(n-1) - 80*a(n-2) + 64*a(n-3); a(1)=7, a(2)=127, a(3)=1535. - Harvey P. Dale, May 20 2013
From Elmo R. Oliveira, May 05 2025: (Start)
E.g.f.: 1 + exp(x)*(8*x*exp(7*x) - 1).
a(n) = A036294(n) - 1. (End)

A064755 a(n) = n*9^n - 1.

Original entry on oeis.org

8, 161, 2186, 26243, 295244, 3188645, 33480782, 344373767, 3486784400, 34867844009, 345191655698, 3389154437771, 33044255768276, 320275094369453, 3088366981419734, 29648323021629455, 283512088894331672, 2701703435345984177, 25666182635786849690, 243153309181138576019
Offset: 1

Author

N. J. A. Sloane, Oct 19 2001

Keywords

Crossrefs

Programs

Formula

From Chai Wah Wu, Feb 01 2018: (Start)
a(n) = 19*a(n-1) - 99*a(n-2) + 81*a(n-3) for n > 3.
G.f.: x*(81*x^2 - 9*x - 8)/((x - 1)*(9*x - 1)^2). (End)
From Elmo R. Oliveira, May 05 2025: (Start)
E.g.f.: 1 + exp(x)*(9*x*exp(8*x) - 1).
a(n) = A158749(n) - 1. (End)
Previous Showing 11-20 of 43 results. Next