cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A366899 Number of prime factors of n*2^n - 1, counted with multiplicity.

Original entry on oeis.org

0, 1, 1, 3, 2, 1, 2, 2, 2, 2, 3, 2, 4, 5, 4, 6, 3, 2, 3, 2, 4, 5, 3, 3, 2, 3, 3, 4, 5, 1, 3, 2, 3, 5, 3, 5, 2, 3, 2, 5, 4, 3, 5, 3, 4, 5, 7, 4, 4, 3, 3, 4, 5, 3, 4, 3, 4, 3, 5, 3, 3, 4, 3, 9, 6, 4, 4, 6, 4, 3, 3, 2, 5, 4, 1, 9, 3, 4, 5, 2, 1, 4, 5, 6, 2, 3, 4
Offset: 1

Views

Author

Tyler Busby, Oct 26 2023

Keywords

Comments

The numbers n*2^n-1 are called Woodall (or Riesel) numbers.

Crossrefs

Cf. A001222, A003261, A085723, A366898 (divisors), A367006 (without multiplicity).

Programs

  • Mathematica
    Table[PrimeOmega[n*2^n - 1], {n, 1, 100}] (* Amiram Eldar, Dec 09 2023 *)
  • PARI
    a(n) = bigomega(n*2^n - 1); \\ Michel Marcus, Dec 09 2023

Formula

a(n) = bigomega(n*2^n - 1) = A001222(A003261(n)).

A064753 a(n) = n*7^n - 1.

Original entry on oeis.org

6, 97, 1028, 9603, 84034, 705893, 5764800, 46118407, 363182462, 2824752489, 21750594172, 166095446411, 1259557135290, 9495123019885, 71213422649144, 531726889113615, 3954718737782518, 29311444762388081, 216579008522089716, 1595845325952240019, 11729463145748964146
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2001

Keywords

Crossrefs

For a(n)=n*k^n-1 cf. -A000012 (k=0), A001477 (k=1), A003261 (k=2), A060352 (k=3), A060416 (k=4), A064751 (k=5), A064752 (k=6), this sequence (k=7), A064754 (k=8), A064755 (k=9), A064756 (k=10), A064757 (k=11), A064758 (k=12).
Cf. A036293.

Programs

  • Magma
    [ n*7^n-1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
  • Maple
    k:= 7; f:= gfun:-rectoproc({1 + (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(1) = k-1}, a(n), remember): map(f, [$1..20]); # Georg Fischer, Feb 19 2021
  • Mathematica
    Table[n 7^n-1,{n,20}] (* or *) LinearRecurrence[{15,-63,49},{6,97,1028},20] (* Harvey P. Dale, Feb 12 2022 *)

Formula

From Alois P. Heinz, Feb 19 2021: (Start)
G.f.: (56*x^2-21*x+1)/((x-1)*(7*x-1)^2).
a(n) = A036293(n) - 1. (End)
From Elmo R. Oliveira, May 05 2025: (Start)
E.g.f.: 1 + exp(x)*(7*x*exp(6*x) - 1).
a(n) = 15*a(n-1) - 63*a(n-2) + 49*a(n-3) for n > 3. (End)

A064756 a(n) = n*10^n - 1.

Original entry on oeis.org

9, 199, 2999, 39999, 499999, 5999999, 69999999, 799999999, 8999999999, 99999999999, 1099999999999, 11999999999999, 129999999999999, 1399999999999999, 14999999999999999, 159999999999999999, 1699999999999999999, 17999999999999999999, 189999999999999999999, 1999999999999999999999
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2001

Keywords

Crossrefs

Cf. for a(n) = n*k^n - 1: -A000012 (k=0), A001477 (k=1), A003261 (k=2), A060352 (k=3), A060416 (k=4), A064751 (k=5), A064752 (k=6), A064753 (k=7), A064754 (k=8), A064755 (k=9), this sequence (k=10), A064757 (k=11), A064758 (k=12).

Programs

  • Magma
    [ n*10^n-1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
  • Maple
    k:= 10; f:= gfun:-rectoproc({1 + (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(1) = k-1}, a(n), remember): map(f, [$1..20]); # Georg Fischer, Feb 19 2021
  • Mathematica
    Array[# 10^# - 1 &, 18] (* Michael De Vlieger, Jan 14 2020 *)

Formula

From Elmo R. Oliveira, Sep 07 2024: (Start)
G.f.: x*(100*x^2 - 10*x - 9)/((x - 1)*(10*x - 1)^2).
E.g.f.: 1 + exp(x)*(10*x*exp(9*x) - 1).
a(n) = 21*a(n-1) - 120*a(n-2) + 100*a(n-3) for n > 3.
a(n) = A126431(n) - 1 = A064748(n) - 2. (End)

A064757 a(n) = n*11^n - 1.

Original entry on oeis.org

10, 241, 3992, 58563, 805254, 10629365, 136410196, 1714871047, 21221529218, 259374246009, 3138428376720, 37661140520651, 448795257871102, 5316497670165373, 62658722541234764, 735195677817154575, 8592599484487994106, 100078511642860166657, 1162022718519876379528
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2001

Keywords

Comments

Conjecture: satisfies a linear recurrence having signature (23,-143,121). - Harvey P. Dale, May 12 2019
This conjecture is true since a(n) - a(n-1) yields the recurrence 1 + 10*n + 11*n*a(n-1) - (n-1)*a(n) = 0 with polynomial coefficients in n. - Georg Fischer, Feb 19 2021

Crossrefs

Cf. for a(n) = n*k^n - 1: -A000012(k=0), A001477(k=1), A003261 (k=2), A060352 (k=3), A060416 (k=4), A064751 (k=5), A064752 (k=6), A064753 (k=7), A064754 (k=8), A064755 (k=9), A064756 (k=10), this sequence (k=11), A064758 (k=12).
Cf. A064749.

Programs

  • Magma
    [n*11^n - 1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
  • Maple
    k:= 11; f:= gfun:-rectoproc({1 + (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(1) = k-1}, a(n), remember): map(f, [$1..20]); # Georg Fischer, Feb 19 2021
  • Mathematica
    Table[n*11^n-1,{n,20}] (* Harvey P. Dale, May 12 2019 *)

Formula

From Elmo R. Oliveira, Sep 07 2024: (Start)
G.f.: x*(121*x^2 - 11*x - 10)/((x - 1)*(11*x - 1)^2).
E.g.f.: 1 + exp(x)*(11*x*exp(10*x) - 1).
a(n) = 23*a(n-1) - 143*a(n-2) + 121*a(n-3) for n > 3.
a(n) = A064749(n) - 2. (End)

A064758 a(n) = n*12^n - 1.

Original entry on oeis.org

11, 287, 5183, 82943, 1244159, 17915903, 250822655, 3439853567, 46438023167, 619173642239, 8173092077567, 106993205379071, 1390911669927935, 17974858503684095, 231105323618795519, 2958148142320582655, 37716388814587428863, 479219999055934390271, 6070119988041835610111, 76675199848949502443519
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2001

Keywords

Crossrefs

Cf. for a(n) = n*k^n - 1: -A000012(k=0), A001477(k=1), A003261 (k=2), A060352 (k=3), A060416 (k=4), A064751 (k=5), A064752 (k=6), A064753 (k=7), A064754 (k=8), A064755 (k=9), A064756 (k=10), A064757 (k=11), this sequence (k=12).
Cf. A064750.

Programs

  • Magma
    [n*12^n - 1: n in [1..30]]; // Vincenzo Librandi, Jun 21 2018
  • Mathematica
    CoefficientList[Series[(11 + 12 x - 144 x^2) / ((1 - 12 x)^2 (1 - x)), {x, 0, 33}], x] (* Vincenzo Librandi, Jun 21 2018 *)
  • PARI
    a(n) = { n*12^n - 1 } \\ Harry J. Smith, Sep 24 2009
    

Formula

G.f.: x*(11 + 12*x - 144*x^2)/((1 - 12*x)^2*(1 - x)). - Vincenzo Librandi, Jun 21 2018
From Elmo R. Oliveira, Sep 07 2024: (Start)
E.g.f.: 1 + exp(x)*(12*x*exp(11*x) - 1).
a(n) = 25*a(n-1) - 168*a(n-2) + 144*a(n-3) for n > 3.
a(n) = A064750(n) - 2. (End)

A366898 Number of divisors of n*2^n - 1, the Woodall (or Riesel) numbers.

Original entry on oeis.org

1, 2, 2, 6, 4, 2, 4, 4, 4, 4, 6, 4, 12, 10, 8, 48, 8, 4, 8, 4, 16, 16, 8, 8, 4, 8, 8, 16, 24, 2, 8, 4, 8, 32, 8, 32, 4, 8, 4, 24, 16, 8, 32, 8, 16, 24, 40, 16, 16, 8, 8, 16, 24, 8, 16, 8, 16, 6, 32, 8, 8, 16, 8, 512, 48, 16, 12, 48, 16, 8, 8, 4, 24, 16, 2, 256
Offset: 1

Views

Author

Tyler Busby, Oct 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, n*2^n - 1], {n, 1, 100}] (* Amiram Eldar, Dec 11 2023 *)
  • PARI
    a(n) = numdiv(n*2^n - 1); \\ Amiram Eldar, Dec 11 2023

Formula

a(n) = sigma0(n*2^n - 1) = A000005(A003261(n)).

A367003 a(n) is the largest prime factor of n*2^n-1.

Original entry on oeis.org

1, 7, 23, 7, 53, 383, 179, 89, 271, 3413, 2503, 2137, 59, 367, 1433, 41, 15803, 59729, 26423, 11161, 1559, 12611, 9187523, 127867, 119837257, 11527, 2360833, 43969, 2339, 32212254719, 257503, 616318177, 260587, 127873, 682902239, 44939, 69660839431, 1185617
Offset: 1

Views

Author

Sean A. Irvine, Oct 31 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := FactorInteger[n*2^n - 1][[-1, 1]]; Array[a, 40] (* Amiram Eldar, Oct 29 2024 *)

Formula

a(n) = A006530(A003261(n)).

A367006 Number of distinct prime factors of n*2^n - 1.

Original entry on oeis.org

0, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 5, 3, 2, 3, 2, 4, 3, 3, 3, 2, 3, 3, 4, 4, 1, 3, 2, 3, 5, 3, 5, 2, 3, 2, 4, 4, 3, 5, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 3, 4, 3, 4, 2, 5, 3, 3, 4, 3, 9, 5, 4, 3, 5, 4, 3, 3, 2, 4, 4, 1, 7, 3, 4, 5, 2, 1, 4, 4, 6, 2, 2, 4
Offset: 1

Views

Author

Sean A. Irvine, Oct 31 2023

Keywords

Comments

The numbers n*2^n-1 are called Woodall (or Riesel) numbers.

Crossrefs

Programs

  • Mathematica
    Table[PrimeNu[n*2^n - 1], {n, 1, 100}] (* Amiram Eldar, Dec 11 2023 *)
  • PARI
    a(n) = omega(n*2^n - 1); \\ Amiram Eldar, Dec 11 2023

Formula

a(n) = omega(n*2^n - 1) = A001221(A003261(n)).

A236752 Primes of the form k*2^(k-1) - 1.

Original entry on oeis.org

3, 11, 31, 79, 191, 5119, 245759, 524287, 1114111, 3758096383, 1618481116086271, 653980173926178609468673073657929531391, 5359447279004780799548150067050349330431
Offset: 1

Views

Author

Gerasimov Sergey, Jan 30 2014

Keywords

Comments

Primes in A087323.
Corresponding values of k: 2, 3, 4, 5, 6, 10, 15, 16, 17, 28, 46, 123, ...
The values of k-1 are listed in A230769. - Jeppe Stig Nielsen, Oct 16 2019

Examples

			79 is in this sequence because it is prime and for k = 5, k*2^(k-1) - 1 = 5*2^(5-1) - 1 = 79.
		

Crossrefs

Extensions

More terms and corrections of terms and comments by Ralf Stephan, Feb 03 2014

A367002 a(n) is the smallest prime factor of n*2^n-1.

Original entry on oeis.org

7, 23, 3, 3, 383, 5, 23, 17, 3, 3, 23, 5, 5, 7, 3, 3, 79, 13, 1879, 13, 3, 3, 47, 7, 229, 5, 3, 3, 32212254719, 263, 223, 5, 3, 3, 5, 73, 17, 1217, 3, 3, 6709, 29, 7, 71, 3, 3, 11, 97, 47, 228713, 3, 3, 5, 37, 5, 7, 3, 3, 9377, 11, 13, 479, 3, 3, 41, 5, 13, 137
Offset: 2

Views

Author

Sean A. Irvine, Oct 31 2023

Keywords

Crossrefs

Programs

  • Maple
    f:= n -> min(numtheory:-factorset(n*2^n-1)):
    map(f, [$2..100]); # Robert Israel, Nov 08 2023
  • Mathematica
    Table[FactorInteger[n*2^n-1][[1,1]], {n,2,69}] (* Paul F. Marrero Romero, Dec 17 2023 *)

Formula

a(n) = A020639(A003261(n)).
a(n) = 3 iff n == 4 or 5 (mod 6). - Robert Israel, Nov 08 2023
Previous Showing 21-30 of 43 results. Next