cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 76 results. Next

A186650 Total number of n-digit numbers requiring 2 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

1, 4, 9, 29, 100, 317, 1007, 3146, 10016, 31712, 100204, 316799, 1002314, 3169309, 10022310, 31693094
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Comments

A102831(n) + a(n) + A186652(n) + A186654(n) + A186656(n) + A186658(n) + A186660(n) + A186662(n) + A186664(n) + A186666(n) + A186668(n) + A186670(n) + A186672(n) + A186674(n) + A186676(n) + A186678(n) + A186681(n) + A186683(n) + A186685(n) = A052268(n), for n>1.

Crossrefs

Programs

  • Maple
    isbiquadrate:=proc(n) type(root(n,4),posint); end:
    isA003336:=proc(n) local x,y4; if isbiquadrate(n) then false; else for x from 1 do y4:=n-x^4; if y4A003336(k) then i:=i+1; fi; od: return(i); end: for n from 1 do print(a(n)); od;

Formula

a(n) = A186649(n)-A186649(n-1).

Extensions

a(6) from Martin Renner, Feb 26 2011
a(7)-a(16) from Giovanni Resta, Apr 29 2016

A004831 Numbers that are the sum of at most 2 nonzero 4th powers.

Original entry on oeis.org

0, 1, 2, 16, 17, 32, 81, 82, 97, 162, 256, 257, 272, 337, 512, 625, 626, 641, 706, 881, 1250, 1296, 1297, 1312, 1377, 1552, 1921, 2401, 2402, 2417, 2482, 2592, 2657, 3026, 3697, 4096, 4097, 4112, 4177, 4352, 4721, 4802, 5392, 6497, 6561, 6562, 6577, 6642
Offset: 1

Views

Author

Keywords

Comments

Apart from 0, 1, 2, there are no three consecutive terms up to 10^16. The first two consecutive terms not of the form n^4, n^4+1 are 3502321 = 25^4 + 42^4, 3502322 = 17^4 + 43^4. - Charles R Greathouse IV, Oct 17 2017

Crossrefs

Subsequences include A003336, A000583 and A002645.

Programs

  • Haskell
    a004831 n = a004831_list !! (n-1)
    a004831_list = [x ^ 4 + y ^ 4 | x <- [0..], y <- [0..x]]
    -- Reinhard Zumkeller, Jul 15 2013
    
  • Mathematica
    Reap[For[n = 0, n < 10000, n++, If[MatchQ[ PowersRepresentations[n, 2, 4], {{, },_}], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 30 2017 *)
  • PARI
    is(n)=#thue(thueinit(z^4+1),n) \\ Ralf Stephan, Oct 18 2013
    
  • PARI
    list(lim)=my(v=List(),t); for(m=0,sqrtnint(lim\=1,4), for(n=0, min(sqrtnint(lim-m^4,4),m), listput(v,n^4+m^4))); Set(v) \\ Charles R Greathouse IV, Sep 28 2015

Formula

Call f(x) the number of terms if this sequence up to x. Then x^(7/16) << f(x) << x^(1/2); in other words, n^2 << a(n) << n^(16/7). The upper bound becomes O(n^2) if A230562 is finite. - Charles R Greathouse IV, Jul 12 2024

A088687 Numbers that can be represented as j^4 + k^4, with 0 < j < k, in exactly one way.

Original entry on oeis.org

17, 82, 97, 257, 272, 337, 626, 641, 706, 881, 1297, 1312, 1377, 1552, 1921, 2402, 2417, 2482, 2657, 3026, 3697, 4097, 4112, 4177, 4352, 4721, 5392, 6497, 6562, 6577, 6642, 6817, 7186, 7857, 8962, 10001, 10016, 10081, 10256, 10625, 10657, 11296
Offset: 1

Views

Author

Cino Hilliard, Nov 22 2003

Keywords

Examples

			17 = 1^4 + 2^4.
635318657 = 133^4 + 134^4 is absent because it is also 59^4 + 158^4 (see A046881, A230562)
		

Crossrefs

Programs

  • Maple
    N:= 2*10^4: # for terms <= N
    V:= Vector(N):
    for j from 1 while 2*j^4 < N do
      for k from j+1 do
        r:= j^4 + k^4;
        if r > N then break fi;
        V[r]:= V[r]+1;
    od od:
    select(t -> V[t] = 1, [$1..N]); $ Robert Israel, Dec 15 2019
  • Mathematica
    lst={};Do[Do[x=a^4;Do[y=b^4;If[x+y==n,AppendTo[lst,n]],{b,Floor[(n-x)^(1/4)],a+1,-1}],{a,Floor[n^(1/4)],1,-1}],{n,4*7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 22 2009 *)
  • PARI
    powers2(m1,m2,p1) = { for(k=m1,m2, a=powers(k,p1); if(a==1,print1(k",")) ); } powers(n,p) = { z1=0; z2=0; c=0; cr = floor(n^(1/p)+1); for(x=1,cr, for(y=x+1,cr, z1=x^p+y^p; if(z1 == n,c++); ); ); return(c) }

Extensions

Edited by Don Reble, May 03 2006

A018786 Numbers that are the sum of two 4th powers in more than one way.

Original entry on oeis.org

635318657, 3262811042, 8657437697, 10165098512, 51460811217, 52204976672, 68899596497, 86409838577, 138519003152, 160961094577, 162641576192, 264287694402, 397074160625, 701252453457, 823372979472, 835279626752
Offset: 1

Views

Author

Keywords

Comments

Since 4th powers are squares, this is a subsequence of A024508, the analog for squares. Sequence A001235 is the analog for third powers (taxicab numbers). Sequence A255351 lists max {a,b,c,d} where a^4 + b^4 = c^4 + d^4 = a(n), while A255352 lists the whole quadruples (a,b,c,d). - M. F. Hasler, Feb 21 2015

Examples

			a(1) = 59^4 + 158^4 = 133^4 + 134^4.
a(2) = 7^4 + 239^4 = 157^4 + 227^4. Note the remarkable coincidence that here all of {7, 239, 157, 227} are primes. The next larger solution with this property is 17472238301875630082 = 62047^4 + 40351^4 = 59693^4 + 46747^4. - _M. F. Hasler_, Feb 21 2015
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D1.

Crossrefs

Subsequence of A003336 (and hence A004831) and A024508 (and hence A001481).

Programs

  • Mathematica
    Select[ Split[ Sort[ Flatten[ Table[x^4 + y^4, {x, 1, 1000}, {y, 1, x}]]]], Length[#] > 1 & ][[All, 1]] (* Jean-François Alcover, Jul 26 2011 *)
  • PARI
    n=4;L=[];for(b=1,999,for(a=1,b,t=a^n+b^n;for(c=a+1,sqrtn(t\2,n),ispower(t-c^n,n)||next;print1(t",")))) \\ M. F. Hasler, Feb 21 2015
    
  • PARI
    list(lim)=my(v=List()); for(a=134,sqrtnint(lim,4)-1, my(a4=a^4); for(b=sqrtnint((4*a^2 + 6*a + 4)*a,4)+1,min(sqrtnint(lim-a4,4),a), my(t=a4+b^4); for(c=a+1,sqrtnint(lim,4), if(ispower(t-c^4,4), listput(v,t); break)))); Set(v) \\ Charles R Greathouse IV, Jul 12 2024

Formula

A weak lower bound: a(n) >> n^2. - Charles R Greathouse IV, Jul 12 2024

A085319 Primes which are the sum of three 5th powers.

Original entry on oeis.org

3, 307, 487, 9043, 16871, 17293, 17863, 23057, 32359, 32801, 33857, 36739, 40787, 43669, 50599, 59051, 59113, 62417, 65537, 76099, 101267, 104149, 107777, 135893, 160073, 161053, 164419, 249107, 249857, 256609, 259733, 266663, 338909, 340649
Offset: 1

Views

Author

Labos Elemer, Jul 01 2003

Keywords

Comments

Primes in the sumset {A000584 + A000584 + A000584}. There must be an odd number of odd terms in the sum, either 3 odd terms (as with 3 = 1^5 + 1^5 + 1^5 and 487 = 1^5 + 3^5 + 3^5 and 59051 = 1^5 + 1^5 + 9^5) or two even terms and one odd term (as with 307 = 2^5 + 2^5 + 3^5 and 9043 = 3^5 + 4^5 + 6^5). The sum of two positive 5th powers (A003347), other than 2 = 1^5 + 1^5, cannot be prime. - Jonathan Vos Post, Sep 24 2006

Examples

			a(1) = 3 = 1^5 + 1^5 + 1^5.
a(2) = 307 = 2^5 + 2^5 + 3^5.
a(3) = 487 = 1^5 + 3^5 + 3^5.
a(4) = 9043 = 3^5 + 4^5 + 6^5.
a(5) = 16871 = 2^5 + 2^5 + 7^5.
a(6) = 17293 = 3^5 + 3^5 + 7^5.
		

Crossrefs

Programs

  • Mathematica
    lim = 10^6; nn = Floor[(lim - 2)^(1/5)]; t = {}; Do[p = i^5 + j^5 + k^5; If[p <= lim && PrimeQ[p], AppendTo[t, p]], {i, nn}, {j, i}, {k, j}]; t = Union[t] (* Vladimir Joseph Stephan Orlovsky and T. D. Noe, Jul 15 2011 *)
    Select[Prime[Range[2,30000]],Length[PowersRepresentations[#,3,5]]>0&] (* Harvey P. Dale, Nov 26 2014 *)

Extensions

A123032 was identical. - T. D. Noe, Jul 15 2011

A344187 Numbers that are the sum of two positive fourth powers in exactly one way.

Original entry on oeis.org

2, 17, 32, 82, 97, 162, 257, 272, 337, 512, 626, 641, 706, 881, 1250, 1297, 1312, 1377, 1552, 1921, 2402, 2417, 2482, 2592, 2657, 3026, 3697, 4097, 4112, 4177, 4352, 4721, 4802, 5392, 6497, 6562, 6577, 6642, 6817, 7186, 7857, 8192, 8962, 10001, 10016, 10081, 10256, 10625, 10657, 11296, 12401, 13122, 14096, 14642
Offset: 1

Views

Author

David Consiglio, Jr., May 11 2021

Keywords

Comments

Differs from A003336 at term 11660 because 635318657 = 59^4 + 158^4 = 133^4 + 134^4

Examples

			32 is a member of this sequence because 32 = 2^4 + 2^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,2):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 1])
    for x in range(len(rets)):
        print(rets[x])

A003386 Numbers that are the sum of 8 nonzero 8th powers.

Original entry on oeis.org

8, 263, 518, 773, 1028, 1283, 1538, 1793, 2048, 6568, 6823, 7078, 7333, 7588, 7843, 8098, 8353, 13128, 13383, 13638, 13893, 14148, 14403, 14658, 19688, 19943, 20198, 20453, 20708, 20963, 26248, 26503, 26758, 27013, 27268, 32808, 33063, 33318, 33573
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
9534597 is in the sequence as 9534597 = 2^8 + 3^8 + 3^8 + 3^8 + 5^8 + 6^8 + 6^8 + 7^8.
13209988 is in the sequence as 13209988 = 1^8 + 1^8 + 2^8 + 2^8 + 2^8 + 6^8 + 7^8 + 7^8.
19046628 is in the sequence as 19046628 = 2^8 + 2^8 + 3^8 + 4^8 + 6^8 + 7^8 + 7^8 + 7^8. (End)
		

Crossrefs

A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Mathematica
    M = 92646056; m = M^(1/8) // Ceiling; Reap[
    For[a = 1, a <= m, a++, For[b = a, b <= m, b++, For[c = b, c <= m, c++,
    For[d = c, d <= m, d++, For[e = d, e <= m, e++, For[f = e, f <= m, f++,
    For[g = f, g <= m, g++, For[h = g, h <= m, h++,
    s = a^8 + b^8 + c^8 + d^8 + e^8 + f^8 + g^8 + h^8;
    If[s <= M, Sow[s]]]]]]]]]]][[2, 1]] // Union (* Jean-François Alcover, Dec 01 2020 *)

Extensions

b-file checked by R. J. Mathar, Aug 01 2020
Incorrect program removed by David A. Corneth, Aug 01 2020

A060387 Numbers k such that x^4 + y^4 = k * z^4 is solvable in nonzero integers x,y,z.

Original entry on oeis.org

2, 17, 32, 82, 97, 162, 257, 272, 337, 512, 626, 641, 706, 881, 1250, 1297, 1312, 1377, 1552, 1921, 2402, 2417, 2482, 2592, 2657, 3026, 3697, 4097, 4112, 4177, 4352, 4721, 4802, 5392, 5906
Offset: 1

Views

Author

Michel ten Voorde, Apr 04 2001

Keywords

Comments

Numbers k such that k = x^4 + y^4 has a solution in positive rationals x, y.

Crossrefs

5906 is the first term not in A003336. Cf. A020897.

Programs

  • Mathematica
    r[n_, z_] := Reduce[0 < x <= y && x^4 + y^4 == n*z^4, {x, y}, Integers]; zm[] = 1; zm[5906] = 17; ok[n] := (tf = False; Do[ If[ r[n, z] =!= False, tf = True; Break[]], {z, 1, zm[n]}]; tf); A060387 = Reap[ Do[ If[ ok[n], Print[n]; Sow[n]], {n, 1, 5906}]][[2, 1]](* Jean-François Alcover, Mar 09 2012 *)

A123294 Sum of 13 positive 5th powers.

Original entry on oeis.org

13, 44, 75, 106, 137, 168, 199, 230, 255, 261, 286, 292, 317, 323, 348, 354, 379, 385, 410, 416, 441, 472, 497, 503, 528, 534, 559, 565, 590, 596, 621, 627, 652, 683, 714, 739, 745, 770, 776, 801, 807, 832, 838, 863, 894, 925, 956, 981, 987, 1012, 1018, 1036
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2006

Keywords

Comments

Up to 416 = 13*(2^5) this sequence is identical to x+1 for x in A003357 Sum of 12 positive 5th powers. Primes in this sequence (13, 137, 199, 317, ...) are A123299. As proved by J.-R. Chen in 1964, g(5) = 37, so every positive integer can be written as the sum of no more than 37 positive 5th powers. G(5) <= 17, bounding the least integer G(5) such that every positive integer beyond a certain point (i.e., all but a finite number) is the sum of G(5) 5th powers.

Examples

			a(1) = 13 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
a(2) = 44 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5.
a(9) = 255 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5.
a(11) = 286 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5
		

Crossrefs

Programs

  • Mathematica
    up = 1500; q = Range[up^(1/5)]^5; a = {0}; Do[b = Select[ Union@ Flatten@ Table[e + a, {e, q}], # <= up &]; a = b, {k, 13}]; a (* Giovanni Resta, Jun 12 2016 *)

Formula

Extensions

Two missing terms and more terms from Giovanni Resta, Jun 12 2016

A123295 Sum of 14 positive 5th powers.

Original entry on oeis.org

14, 45, 76, 107, 138, 169, 200, 231, 256, 262, 287, 293, 318, 324, 349, 355, 380, 386, 411, 417, 442, 448, 473, 498, 504, 529, 535, 560, 566, 591, 597, 622, 628, 653, 659, 684, 715, 740, 746, 771, 777, 802, 808, 833, 839, 864, 870, 895, 926, 957, 982, 988
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2006

Keywords

Comments

Up to 417 = 13*(2^5) + 1 this sequence is identical to x+2 for x in A003357 Sum of 12 positive 5th powers. Primes in this sequence (107, 293, 349, 653, ...) are A123300. As proved by J.-R. Chen in 1964, g(5) = 37, so every positive integer can be written as the sum of no more than 37 positive 5th powers. G(5) <= 17, bounding the least integer G(5) such that every positive integer beyond a certain point (i.e., all but a finite number) is the sum of G(5) 5th powers.

Examples

			a(1) = 14 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
a(2) = 45 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5.
a(9) = 256 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5.
a(11) = 287 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5
		

Crossrefs

Programs

  • Mathematica
    up = 1000; q = Range[up^(1/5)]^5; a ={0}; Do[b = Select[ Union@ Flatten@ Table[e + a, {e, q}], # <= up &]; a=b, {k, 14}]; a (* Giovanni Resta, Jun 12 2016 *)

Formula

Extensions

5 missing terms and more terms from Giovanni Resta, Jun 12 2016
Previous Showing 41-50 of 76 results. Next