cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 64 results. Next

A046212 First numerator and then denominator of central elements of Leibniz's Harmonic Triangle.

Original entry on oeis.org

1, 1, 1, 6, 1, 30, 1, 140, 1, 630, 1, 2772, 1, 12012, 1, 51480, 1, 218790, 1, 923780, 1, 3879876, 1, 16224936, 1, 67603900, 1, 280816200, 1, 1163381400, 1, 4808643120, 1, 19835652870, 1, 81676217700, 1, 335780006100, 1, 1378465288200, 1
Offset: 1

Views

Author

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.

Crossrefs

Cf. A003506.
Cf. A002457.

Formula

a(2n+1) = A056040(2n+1) = A100071(2n+1). - M. F. Hasler, Jan 25 2012

Extensions

More terms from James Sellers, Dec 13 1999

A046201 Distinct odd numbers in the triangle of denominators in Leibniz's Harmonic Triangle.

Original entry on oeis.org

1, 3, 5, 7, 105, 9, 11, 495, 13, 6435, 15, 1365, 15015, 45045, 17, 19, 2907, 21, 101745, 23, 5313, 168245, 1716099, 25, 18386775, 27, 8775, 42181425, 143416845, 29, 593775, 90135045, 882230895, 31, 13485, 849555, 18407025, 181440675
Offset: 1

Views

Author

Keywords

Examples

			1/1; 1/2, 1/2; 1/3, 1/6, 1/3; 1/4, 1/12, 1/12, 1/4; 1/5, 1/20, 1/30, 1/20, 1/5; ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.

Crossrefs

Extensions

More terms from James Sellers, Dec 13 1999

A137752 First numerator and then denominator (left to right) of Leibniz's harmonic-like triangle.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 5, 6, 1, 3, 1, 4, 7, 12, 7, 12, 1, 4, 1, 5, 9, 20, 31, 30, 9, 20, 1, 5, 1, 6, 11, 30, 49, 60, 49, 60, 11, 30, 1, 6, 1, 7, 13, 42, 71, 105, 209, 140, 71, 105, 13, 42, 1, 7, 1, 8, 15, 56, 97, 168, 351, 280, 351, 280, 97, 168
Offset: 1

Views

Author

Mohammad K. Azarian, Feb 10 2008

Keywords

Comments

In this triangle the right-hand edge consists of the reciprocals of the positive integers. A number that is not in this edge is obtained by adding the number diagonally above it to the number to its immediate right. Note that in Leibniz's harmonic triangle we subtract the two numbers to get a number which is not on the right-hand edge.

Examples

			1/1;
1/2, 1/2;
1/3, 5/6, 1/3;
1/4, 7/12, 7/12, 1/4;
1/5, 9/20, 31/30, 9/20, 1/5;
		

Crossrefs

A137753 First denominator and then numerator (left to right) of Leibniz's harmonic-like triangle.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 1, 6, 5, 3, 1, 4, 1, 12, 7, 12, 7, 4, 1, 5, 1, 20, 9, 30, 31, 20, 9, 5, 1, 6, 1, 30, 11, 60, 49, 60, 49, 30, 11, 6, 1, 7, 1, 42, 13, 105, 71, 140, 209, 105, 71, 42, 13, 7, 1, 8, 1, 56, 15, 168, 97, 280, 351, 280, 351, 168, 97
Offset: 1

Views

Author

Mohammad K. Azarian, Feb 10 2008

Keywords

Examples

			1/1; --> 1 1
1/2, 1/2; --> 2 1 2 1
1/3, 5/6, 1/3; --> 3 1 6 5 3 1
1/4, 7/12, 7/12, 1/4; --> 4 1 12 7 12 7 4 1
1/5, 9/20, 31/30, 9/20, 1/5; --> 5 1 20 9 30 31 20 9 5 1
		

Crossrefs

A046204 Distinct even numbers in the triangle of denominators in Leibniz's Harmonic Triangle.

Original entry on oeis.org

2, 6, 4, 12, 20, 30, 60, 42, 140, 8, 56, 168, 280, 72, 252, 504, 630, 10, 90, 360, 840, 1260, 110, 1320, 2310, 2772, 132, 660, 1980, 3960, 5544, 156, 858, 2860, 10296, 12012, 14, 182, 1092, 4004, 10010, 18018, 24024, 210, 5460, 30030, 51480, 16, 240
Offset: 1

Views

Author

Keywords

Examples

			1/1; 1/2, 1/2; 1/3, 1/6, 1/3; 1/4, 1/12, 1/12, 1/4; 1/5, 1/20, 1/30, 1/20, 1/5; ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.

Crossrefs

Cf. A003506.

Extensions

More terms from James Sellers, Dec 13 1999

A046206 In Leibniz's Harmonic Triangle, write denominator first and then numerator of each element.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 1, 6, 1, 3, 1, 4, 1, 12, 1, 12, 1, 4, 1, 5, 1, 20, 1, 30, 1, 20, 1, 5, 1, 6, 1, 30, 1, 60, 1, 60, 1, 30, 1, 6, 1, 7, 1, 42, 1, 105, 1, 140, 1, 105, 1, 42, 1, 7, 1, 8, 1, 56, 1, 168, 1, 280, 1, 280, 1, 168, 1, 56, 1, 8, 1, 9, 1, 72, 1, 252, 1, 504, 1, 630, 1, 504, 1, 252
Offset: 1

Views

Author

Keywords

Examples

			1/1; 1/2, 1/2; 1/3, 1/6, 1/3; 1/4, 1/12, 1/12, 1/4; 1/5, 1/20, 1/30, 1/20, 1/5; ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.

Crossrefs

Cf. A003506.

Extensions

More terms from James Sellers, Dec 13 1999

A046208 In Leibniz's Harmonic Triangle, write the numerator first and then the denominator of each element to the right of the central elements.

Original entry on oeis.org

1, 2, 1, 3, 1, 12, 1, 4, 1, 20, 1, 5, 1, 60, 1, 30, 1, 6, 1, 105, 1, 42, 1, 7, 1, 280, 1, 168, 1, 56, 1, 8, 1, 504, 1, 252, 1, 72, 1, 9, 1, 1260, 1, 840, 1, 360, 1, 90, 1, 10, 1, 2310, 1, 1320, 1, 495, 1, 110, 1, 11, 1, 5544, 1, 3960, 1, 1980, 1, 660, 1, 132, 1, 12, 1, 10296, 1
Offset: 1

Views

Author

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.

Crossrefs

Cf. A003506.

Extensions

More terms from James Sellers, Dec 13 1999

A090802 Triangle read by rows: a(n,k) = number of k-length walks in the Hasse diagram of a Boolean algebra of order n.

Original entry on oeis.org

1, 2, 1, 4, 4, 2, 8, 12, 12, 6, 16, 32, 48, 48, 24, 32, 80, 160, 240, 240, 120, 64, 192, 480, 960, 1440, 1440, 720, 128, 448, 1344, 3360, 6720, 10080, 10080, 5040, 256, 1024, 3584, 10752, 26880, 53760, 80640, 80640, 40320
Offset: 0

Views

Author

Ross La Haye, Feb 10 2004

Keywords

Comments

Row sums = A010842(n); Row sums from column 1 on = A066534(n) = n*A010842(n-1) = A010842(n) - 2^n.
a(n,k) = n! = k! = A000142(n) for n = k; a(n,n-1) = 2*n! = A052849(n) for n > 1; a(n,n-2) = 2*n! = A052849(n) for n > 2; a(n,n-3) = (4/3)*n! = A082569(n) for n > 3; a(n,n-1)/a(2,1) = n!/2! = A001710(n) for n > 1; a(n,n-2)/ a(3,1) = n!/3! = A001715(n) for n > 2; a(n,n-3)/a(4,1) = n!/4! = A001720(n) for n > 3.
a(2k, k) = A052714(k+1). a(2k-1, k) = A034910(k).
a(n,0) = A000079(n); a(n,1) = A001787(n) = row sums of A003506; a(n,2) = A001815(n) = 2!*A001788(n-1); a(n,3) = A052771(n) = 3!*A001789(n); a(n,4) = A052796(n) = 4!*A003472(n); ceiling[a(n,1) / 2] = A057711(n); a(n,5) = 5!*A054849(n).
In a class of n students, the number of committees (of any size) that contain an ordered k-sized subcommittee is a(n,k). - Ross La Haye, Apr 17 2006
Antidiagonal sums [1,2,5,12,30,76,198,528,1448,4080,...] appear to be binomial transform of A000522 interleaved with itself, i.e., 1,1,2,2,5,5,16,16,65,65,... - Ross La Haye, Sep 09 2006
Let P(A) be the power set of an n-element set A. Then a(n,k) = the number of ways to add k elements of A to each element x of P(A) where the k elements are not elements of x and order of addition is important. - Ross La Haye, Nov 19 2007
The derivatives of x^n evaluated at x=2. - T. D. Noe, Apr 21 2011

Examples

			{1};
{2, 1};
{4, 4, 2};
{8, 12, 12, 6};
{16, 32, 48, 48, 24};
{32, 80, 160, 240, 240, 120};
{64, 192, 480, 960, 1440, 1440, 720};
{128, 448, 1344, 3360, 6720, 10080, 10080, 5040};
{256, 1024, 3584, 10752, 26880, 53760, 80640, 80640, 40320}
a(5,3) = 240 because P(5,3) = 60, 2^(5-3) = 4 and 60 * 4 = 240.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[n!/(n-k)! * 2^(n-k), {n, 0, 8}, {k, 0, n}]] (* Ross La Haye, Feb 10 2004 *)

Formula

a(n, k) = 0 for n < k. a(n, k) = k!*C(n, k)*2^(n-k) = P(n, k)*2^(n-k) = (2n)!!/((n-k)!*2^k) = k!*A038207(n, k) = A068424*2^(n-k) = Sum[C(n, m)*P(n-m, k), {m, 0, n-k}] = Sum[C(n, n-m)*P(n-m, k), {m, 0, n-k}] = n!*Sum[1/(m!*(n-m-k)!), {m, 0, n-k}] = k!*Sum[C(n, m)*C(n-m, k), {m, 0, n-k}] = k!*Sum[C(n, n-m)*C(n-m, k), {m, 0, n-k}] = k!*C(n, k)*Sum[C(n-k, n-m-k), {m, 0, n-k}] = k!*C(n, k)*Sum[C(n-k, m), {m, 0, n-k}] for n >= k.
a(n, k) = 0 for n < k. a(n, k) = n*a(n-1, k-1) for n >= k >= 1.
E.g.f. (by columns): exp(2x)*x^k.

Extensions

More terms from Ray Chandler, Feb 26 2004
Entry revised by Ross La Haye, Aug 18 2006

A033488 a(n) = n*(n+1)*(n+2)*(n+3)/6.

Original entry on oeis.org

0, 4, 20, 60, 140, 280, 504, 840, 1320, 1980, 2860, 4004, 5460, 7280, 9520, 12240, 15504, 19380, 23940, 29260, 35420, 42504, 50600, 59800, 70200, 81900, 95004, 109620, 125860, 143840, 163680, 185504, 209440, 235620, 264180, 295260, 329004, 365560, 405080
Offset: 0

Views

Author

Keywords

Comments

With two initial 0, convolution of the oblong numbers (A002378) with the nonnegative even numbers (A005843). - Bruno Berselli, Oct 24 2016

Crossrefs

1/beta(n, 4) in A061928.
Convolution of the oblong numbers with the odd numbers: A008911.
Fourth column of A003506.

Programs

Formula

a(n) = n*C(3+n, 3). - Zerinvary Lajos, Jan 10 2006
G.f.: 4*x/(1-x)^5. - Colin Barker, Mar 01 2012
G.f.: (2*x/(1-x))*W(0), where W(k) = 1 + 1/( 1 - x*(k+2)*(k+4)/( x*(k+2)*(k+4) + (k+1)*(k+2)/W(k+1) ) ); (continued fraction). - Sergei N. Gladkovskii, Aug 24 2013
From Amiram Eldar, Jun 02 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 8*log(2) - 16/3. (End)
E.g.f.: exp(x)*x*(24 + 36*x + 12*x^2 + x^3)/6. - Stefano Spezia, Jul 11 2025

A046205 In Leibniz's Harmonic Triangle, write numerator first and then denominator of each element.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 1, 6, 1, 3, 1, 4, 1, 12, 1, 12, 1, 4, 1, 5, 1, 20, 1, 30, 1, 20, 1, 5, 1, 6, 1, 30, 1, 60, 1, 60, 1, 30, 1, 6, 1, 7, 1, 42, 1, 105, 1, 140, 1, 105, 1, 42, 1, 7, 1, 8, 1, 56, 1, 168, 1, 280, 1, 280, 1, 168, 1, 56, 1, 8, 1, 9, 1, 72, 1, 252, 1, 504, 1, 630, 1, 504, 1
Offset: 1

Views

Author

Keywords

Examples

			1/1;
1/2, 1/2;
1/3, 1/6, 1/3;
1/4, 1/12, 1/12, 1/4;
1/5, 1/20, 1/30, 1/20, 1/5; ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.

Crossrefs

Extensions

More terms from Gregory D Johnson (gjohn(AT)iname.com)
Edited by M. F. Hasler, Apr 05 2015
Previous Showing 11-20 of 64 results. Next