cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 63 results. Next

A014829 a(1)=1, a(n) = 6*a(n-1) + n.

Original entry on oeis.org

1, 8, 51, 310, 1865, 11196, 67183, 403106, 2418645, 14511880, 87071291, 522427758, 3134566561, 18807399380, 112844396295, 677066377786, 4062398266733, 24374389600416, 146246337602515, 877478025615110, 5264868153690681, 31589208922144108, 189535253532864671, 1137211521197188050
Offset: 1

Views

Author

Keywords

Programs

Formula

a(n) = (6^(n+1) - 5*n - 6)/25. - Rolf Pleisch, Oct 25 2010
Binomial transform of x*(1+x)/(1-5*x), or A003948 with a leading 0. a(n) = Sum_{k=0..n} (n-k)*6^k = Sum_{k=0..n} k*6^(n-k); a(n) = Sum_{k=0..n} binomial(n+2,k+2)*5^k [Offset 0]. - Paul Barry, Jul 30 2004
From Colin Barker, Jun 03 2020: (Start)
G.f.: x/((1 - x)^2*(1 - 6*x)).
a(n) = 8*a(n-1) - 13*a(n-2) + 6*a(n-3) for n > 3. (End)
E.g.f.: exp(x)*(6*exp(5*x) - 5*x - 6)/25. - Elmo R. Oliveira, Mar 29 2025

A080961 Fourth binomial transform of A010686 (period 2: repeat 1,5).

Original entry on oeis.org

1, 9, 57, 321, 1713, 8889, 45417, 230001, 1158753, 5820009, 29178777, 146130081, 731358993, 3658920729, 18300980937, 91524036561, 457677578433, 2288560079049, 11443316955897, 57218134461441, 286095321353073, 1430490553902969, 7152494610927657, 35762598578876721
Offset: 0

Views

Author

Paul Barry, Mar 03 2003

Keywords

Examples

			G.f. = 1 + 9*x + 57*x^2 + 321*x^3 + 1713*x^4 + 8889*x^5 + 45417*x^6 + 230001*x^7 + ...
		

Crossrefs

Programs

  • Magma
    binomtf:=func< V | [ &+[ Binomial(i-1, k-1)*V[k]: k in [1..i] ]: i in [1..#V] ] >;
    binomtf(binomtf(binomtf(binomtf(&cat[ [1, 5]: n in [1..11] ])))); // Klaus Brockhaus, Nov 26 2009
    
  • Magma
    [3*5^n - 2*3^n: n in [0..30]]; // Vincenzo Librandi, Dec 07 2012
  • Maple
    A080961:=n->3*5^n-2*3^n: seq(A080961(n), n=0..30); # Wesley Ivan Hurt, Dec 08 2016
  • Mathematica
    CoefficientList[Series[(1 + x)/((1 - 3*x) * (1 - 5*x)), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 07 2012 *)

Formula

a(n) = 5*a(n-1) + 4*3^(n-1).
a(n) = 3*5^n - 2*3^n.
G.f.: (1+x)/((1-3*x)*(1-5*x)). - Klaus Brockhaus, Nov 26 2009
From Mario C. Enriquez, Dec 08 2016: (Start)
a(n) = A005059(n+1) + A005059(n) = (5^(n+1)+5^n-3^(n+1)-3^n)/2.
a(n) = Sum_{k=0..n} A003948(n-k)*3^k = Sum_{k=0..n} (3^k * ceiling(Sum_{v=0..n-k} (5^v - 5^(v-2)))). (End)
a(n) = 8*a(n-1) - 15*a(n-2) for n > 1. - Wesley Ivan Hurt, Dec 08 2016
E.g.f.: exp(3*x)*(3*exp(2*x) - 2). - Stefano Spezia, Jul 23 2024

Extensions

Definition corrected, edited by Klaus Brockhaus, Nov 26 2009

A208345 Triangle of coefficients of polynomials v(n,x) jointly generated with A208344; see the Formula section.

Original entry on oeis.org

1, 0, 3, 0, 1, 7, 0, 1, 3, 17, 0, 1, 3, 10, 41, 0, 1, 3, 11, 30, 99, 0, 1, 3, 12, 35, 87, 239, 0, 1, 3, 13, 40, 108, 245, 577, 0, 1, 3, 14, 45, 130, 322, 676, 1393, 0, 1, 3, 15, 50, 153, 406, 938, 1836, 3363, 0, 1, 3, 16, 55, 177, 497, 1236, 2682, 4925, 8119, 0, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 25 2012

Keywords

Comments

Row sums, u(n,1): (1,2,5,13,...), odd-indexed Fibonacci numbers.
Row sums, v(n,1): (1,3,8,21,...), even-indexed Fibonacci numbers.
As triangle T(n,k) with 0<=k<=n, it is (0, 1/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (3, -2/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 26 2012

Examples

			First five rows:
  1
  0   3
  0   1   7
  0   1   3   17
  0   1   3   10   41
First five polynomials u(n,x):
  1, 3*x, x + 7*x^2, x + 3*x^2 + 17*x^3, x + 3*x^2 + 10*x^3 + 41*x^4.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A208344 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A208345 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]
    Table[v[n, x] /. x -> 1, {n, 1, z}]

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = x*u(n-1,x) + 2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Feb 26 2012: (Start)
As triangle T(n,k), 0<=k<=n:
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k-2) - 2*T(n-2,k-1) with T(0,0) = 1, T(1,0) = 0, T(1,1) = 3, T(n,k) = 0 if k<0 or if k>n.
G.f.: (1+(y-1)*x)/(1-(1+2*y)*x+y*(2-y)*x^2).
Sum_{k=0..n} T(n,k)*x^k = A152167(n), A000007(n), A001906(n+1), A003948(n) for x = -1, 0, 1, 2 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A078057(n), A001906(n+1), A000244(n), A081567(n), A083878(n), A165310(n) for x = 0, 1, 2, 3, 4, 5 respectively. (End)

A208509 Triangle of coefficients of polynomials v(n,x) jointly generated with A208508; see the Formula section.

Original entry on oeis.org

1, 3, 5, 1, 7, 5, 9, 14, 1, 11, 30, 7, 13, 55, 27, 1, 15, 91, 77, 9, 17, 140, 182, 44, 1, 19, 204, 378, 156, 11, 21, 285, 714, 450, 65, 1, 23, 385, 1254, 1122, 275, 13, 25, 506, 2079, 2508, 935, 90, 1, 27, 650, 3289, 5148, 2717, 442, 15, 29, 819, 5005, 9867
Offset: 1

Views

Author

Clark Kimberling, Feb 27 2012

Keywords

Examples

			First five rows:
  1
  3
  5    1
  7    5
  9   14   1
First five polynomials v(n,x):
  1
  3
  5 +   x
  7 +  5x
  9 + 14x + x^2
		

Crossrefs

Row sums, v(n,1): A003948.
Alternating row sums, v(n,-1): A090131.
Cf. A208508.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A208508 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A208509 *)

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x), v(n,x) = u(n-1,x) + v(n-1,x) + 1, with u(1,x)=1, v(1,x)=1.
Conjecture: T(n,k) = binomial(n-1,2*k+1) + binomial(n,2*k+1). - Knud Werner, Jan 11 2022

A158497 Triangle T(n,k) formed by the coordination sequences and the number of leaves for trees.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 12, 1, 4, 12, 36, 108, 1, 5, 20, 80, 320, 1280, 1, 6, 30, 150, 750, 3750, 18750, 1, 7, 42, 252, 1512, 9072, 54432, 326592, 1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890
Offset: 0

Views

Author

Thomas Wieder, Mar 20 2009

Keywords

Comments

Consider the k-fold Cartesian products CP(n,k) of the vector A(n) = [1, 2, 3, ..., n].
An element of CP(n,k) is a n-tuple T_t of the form T_t = [i_1, i_2, i_3, ..., i_k] with t=1, .., n^k.
We count members T of CP(n,k) which satisfy some condition delta(T_t), so delta(.) is an indicator function which attains values of 1 or 0 depending on whether T_t is to be counted or not; the summation sum_{CP(n,k)} delta(T_t) over all elements T_t of CP produces the count.
For the triangle here we have delta(T_t) = 0 if for any two i_j, i_(j+1) in T_t one has i_j = i_(j+1): T(n,k) = Sum_{CP(n,k)} delta(T_t) = Sum_{CP(n,k)} delta(i_j = i_(j+1)).
The test on i_j > i_(j+1) generates A158498. One gets the Pascal triangle A007318 if the indicator function tests whether for any two i_j, i_(j+1) in T_t one has i_j >= i_(j+1).
Use of other indicator functions can also calculate the Bell numbers A000110, A000045 or A000108.

Examples

			Array, A(n, k) = n*(n-1)^(k-1) for n > 1, A(n, k) = 1 otherwise, begins as:
  1,  1,   1,    1,     1,      1,       1,        1,        1, ... A000012;
  1,  1,   1,    1,     1,      1,       1,        1,        1, ... A000012;
  1,  2,   2,    2,     2,      2,       2,        2,        2, ... A040000;
  1,  3,   6,   12,    24,     48,      96,      192,      384, ... A003945;
  1,  4,  12,   36,   108,    324,     972,     2916,     8748, ... A003946;
  1,  5,  20,   80,   320,   1280,    5120,    20480,    81920, ... A003947;
  1,  6,  30,  150,   750,   3750,   18750,    93750,   468750, ... A003948;
  1,  7,  42,  252,  1512,   9072,   54432,   326592,  1959552, ... A003949;
  1,  8,  56,  392,  2744,  19208,  134456,   941192,  6588344, ... A003950;
  1,  9,  72,  576,  4608,  36864,  294912,  2359296, 18874368, ... A003951;
  1, 10,  90,  810,  7290,  65610,  590490,  5314410, 47829690, ... A003952;
  1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, ............. A003953;
  1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, ............. A003954;
  1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, ............. A170732;
  ... ;
The triangle begins as:
  1
  1, 1;
  1, 2,  2;
  1, 3,  6,  12;
  1, 4, 12,  36,  108;
  1, 5, 20,  80,  320,  1280;
  1, 6, 30, 150,  750,  3750,  18750;
  1, 7, 42, 252, 1512,  9072,  54432, 326592;
  1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344;
  ...;
T(3,3) = 12 counts the triples (1,2,1), (1,2,3), (1,3,1), (1,3,2), (2,1,2), (2,1,3), (2,3,1), (2,3,2), (3,1,2), (3,1,3), (3,2,1), (3,2,3) out of a total of 3^3 = 27 triples in the CP(3,3).
		

Crossrefs

Array rows n: A170733 (n=14), ..., A170769 (n=50).
Columns k: A000012(n) (k=0), A000027(n) (k=1), A002378(n-1) (k=2), A011379(n-1) (k=3), A179824(n) (k=4), A101362(n-1) (k=5), 2*A168351(n-1) (k=6), 2*A168526(n-1) (k=7), 2*A168635(n-1) (k=8), 2*A168675(n-1) (k=9), 2*A170783(n-1) (k=10), 2*A170793(n-1) (k=11).
Diagonals k: A055897 (k=n), A055541 (k=n-1), A373395 (k=n-2), A379612 (k=n-3).
Sums: (-1)^n*A065440(n) (signed row).

Programs

  • Magma
    A158497:= func< n,k | k le 1 select n^k else n*(n-1)^(k-1) >;
    [A158497(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2025
    
  • Mathematica
    A158497[n_, k_]:= If[n<2 || k==0, 1, n*(n-1)^(k-1)];
    Table[A158497[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 18 2025 *)
  • SageMath
    def A158497(n,k): return n^k if k<2 else n*(n-1)^(k-1)
    print(flatten([[A158497(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 18 2025

Formula

T(n, k) = (n-1)^(k-1) + (n-1)^k = n*A079901(n-1,k-1), k > 0.
Sum_{k=0..n} T(n,k) = (n*(n-1)^n - 2)/(n-2), n > 2.

Extensions

Edited by R. J. Mathar, Mar 31 2009
More terms added by G. C. Greubel, Mar 18 2025

A163317 Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 6, 30, 150, 750, 3735, 18600, 92640, 461400, 2298000, 11445210, 57003000, 283904040, 1413987000, 7042377000, 35074632060, 174689570400, 870043225440, 4333259349600, 21581843340000, 107488595621160, 535348070440800
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003948, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-5*x+14*x^5-10*x^6) )); // G. C. Greubel, May 12 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^5)/(1-5*x+14*x^5-10*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{4,4,4,4,-10}, {1,6,30,150,750,3735}, 30] (* G. C. Greubel, Dec 18 2016 *)
    coxG[{5, 10, -4}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-5*x+14*x^5-10*x^6)) \\ G. C. Greubel, Dec 18 2016
    
  • Sage
    ((1+x)*(1-x^5)/(1-5*x+14*x^5-10*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1).
a(n) = 4*a(n-1)+4*a(n-2)+4*a(n-3)+4*a(n-4)-10*a(n-5). - Wesley Ivan Hurt, May 10 2021

A163922 Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

Original entry on oeis.org

1, 6, 30, 150, 750, 3750, 18735, 93600, 467640, 2336400, 11673000, 58320000, 291375210, 1455753000, 7273154040, 36337737000, 181548627000, 907043385000, 4531720872060, 22641137570400, 113118421225440, 565156109349600
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003948, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[6,30,150,750,3750,18735];; for n in [7..30] do a[n]:=4*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -10*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-5*t+14*t^6-10*t^7) )); // G. C. Greubel, Aug 10 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^6)/(1-5*t+14*t^6-10*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019
  • Mathematica
    coxG[{6,10,-4,30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 13 2017 *)
    CoefficientList[Series[(1+t)*(1-t^6)/(1-5*t+14*t^6-10*t^7), {t,0,30}], t] (* G. C. Greubel, Aug 07 2017 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-5*t+14*t^6-10*t^7)) \\ G. C. Greubel, Aug 07 2017
    
  • Sage
    def A163922_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^6)/(1-5*t+14*t^6-10*t^7)).list()
    A163922_list(30) # G. C. Greubel, Aug 10 2019
    

Formula

G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1).
a(n) = -10*a(n-6) + 4*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021

A164365 Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 6, 30, 150, 750, 3750, 18750, 93735, 468600, 2342640, 11711400, 58548000, 292695000, 1463250000, 7315125210, 36570003000, 182821904040, 913968987000, 4569142377000, 22842199635000, 114193439625000, 570879418872060
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003948, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[6, 30, 150, 750, 3750, 18750, 93735];; for n in [8..30] do a[n]:=4*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]) -10*a[n-7]; od; Concatenation([1], a); # G. C. Greubel, Aug 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^7)/(1-5*t+14*t^7-10*t^8) )); // G. C. Greubel, Aug 28 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^7)/(1-5*t+14*t^7-10*t^8), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^7)/(1-5*t+14*t^7-10*t^8), {t, 0, 30}], t] (* G. C. Greubel, Sep 15 2017 *)
    coxG[{7, 10, -4}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 28 2019 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^7)/(1-5*t+14*t^7-10*t^8)) \\ G. C. Greubel, Sep 15 2017
    
  • Sage
    def A164365_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^7)/(1-5*t+14*t^7-10*t^8)).list()
    A164365_list(30) # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1).
a(n) = -10*a(n-7) + 4*Sum_{k=1..6} a(n-k). - Wesley Ivan Hurt, May 11 2021

A165777 Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

Original entry on oeis.org

1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718735, 58593600, 292967640, 1464836400, 7324173000, 36620820000, 183103875000, 915518250000, 4577585625000, 22887900000000, 114439359375210, 572196093753000, 2860976953154040, 14304867187737000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003948, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • GAP
    a:=[6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718735];; for n in [11..30] do a[n]:=4*Sum([1..9], j-> a[n-j]) -10*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 17 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^10)/(1-5*t+14*t^10-10*t^11) )); // G. C. Greubel, Sep 17 2019
    
  • Maple
    A165777 := proc(n)
    coeftayl( (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1), t=0, n);
    end proc:
    seq(A165777(n), n=0..25); # Wesley Ivan Hurt, Nov 14 2014
  • Mathematica
    CoefficientList[Series[(t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1), {t, 0, 25}], t] (* Wesley Ivan Hurt, Nov 14 2014 *)
    coxG[{10, 10, -4}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 17 2019 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^10)/(1-5*t+14*t^10-10*t^11)) \\ G. C. Greubel, Sep 17 2019
    
  • Sage
    def A165777_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^10)/(1-5*t+14*t^10-10*t^11)).list()
    A165777_list(30) # G. C. Greubel, Sep 17 2019
    

Formula

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1).

Extensions

More terms from Wesley Ivan Hurt, Nov 14 2014

A166364 Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.

Original entry on oeis.org

1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593735, 292968600, 1464842640, 7324211400, 36621048000, 183105195000, 915525750000, 4577627625000, 22888132500000, 114440634375000, 572203031250000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003948, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Maple
    seq(coeff(series((1+t)*(1-t^11)/(1-5*t+14*t^11-10*t^12), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 13 2020
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^11)/(1-5*t+14*t^11-10*t^12), {t,0,30}], t] (* G. C. Greubel, May 10 2016 *)
    coxG[{11,10,-4,30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 13 2016 *)
  • Sage
    def A166364_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+t)*(1-t^11)/(1-5*t+14*t^11-10*t^12) ).list()
    A166364_list(30) # G. C. Greubel, Mar 13 2020

Formula

G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^11 - 4*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1).
Previous Showing 11-20 of 63 results. Next