A054344
Number of ways of covering a 2n X 2n lattice with 2n^2 dominoes of which exactly 6 are horizontal (or vertical) dominoes.
Original entry on oeis.org
9, 1064, 21656, 197484, 1143366, 4927524, 17240292, 51631617, 137044523, 330284988, 735542444, 1533609350, 3024043008, 5684167992, 10249533240, 17821214019, 30006185613, 49097892704, 78305096016
Offset: 2
Yong Kong (ykong(AT)curagen.com), May 06 2000
a(3) = 1064 because we have 1064 ways to cover a 36 X 36 lattice with exactly 6 horizontal (or vertical) dominoes and exactly 12 vertical (or horizontal) dominoes.
- Vincenzo Librandi, Table of n, a(n) for n = 2..1000
- M. E. Fisher, Statistical mechanics of dimers on a plane lattice, Physical Review, 124 (1961), 1664-1672.
- P. W. Kasteleyn, The Statistics of Dimers on a Lattice, Physica, 27 (1961), 1209-1225.
- Index entries for sequences related to dominoes
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
CoefficientList[Series[(x^9-10*x^8+45*x^7-36*x^6+3096*x^5 +17256*x^4 +27724*x^3+11421*x^2+974*x+9)/(x-1)^10,{x,0,30}],x] (* Vincenzo Librandi, Jun 26 2012 *)
A124997
Number of fault-free domino tilings (or dimer coverings) of a 2n X 2n square.
Original entry on oeis.org
0, 0, 0, 25506, 1759280998, 854818404562894, 3588226034666378581610, 138311081613064367684548901556, 50272239752141442901464758051467073726, 174927321882862834702052846250836696969014873138, 5889117928937174007411459040006660524033737246962655301188
Offset: 1
A127606
a(n) = 2^(2*n*n) * Product_{1<=i,j<=n} (cos(i*Pi/(2*n+1))^2 + sin(j*Pi/(2*n+1))^2).
Original entry on oeis.org
1, 4, 176, 79808, 372713728, 17931360207872, 8887976555024756736, 45390122553039546330628096, 2388340820825093234015277927170048, 1294826675280341699389150405743029631844352
Offset: 0
-
for n from 0 to 12 do a[n]:=2^(2*n*n)*product(product(cos(i*Pi/(2*n+1))^2+ sin(j*Pi/(2*n+1))^2,j=1..n),i=1..n) od: seq(round(evalf(a[n],300)),n=0..12);
-
Table[2^(2*n^2) * Product[Product[Cos[i*Pi/(2*n + 1)]^2 + Sin[j*Pi/(2*n + 1)]^2, {i, 1, n}], {j, 1, n}], {n, 0, 15}] // Round (* Vaclav Kotesovec, Mar 18 2023 *)
-
default(realprecision, 120);
{a(n) = round(prod(i=1, n, prod(j=1, n, 4*cos(i*Pi/(2*n+1))^2+4*sin(j*Pi/(2*n+1))^2)))} \\ Seiichi Manyama, Dec 31 2020
-
{a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n+1, 1, I*x/2), polchebyshev(2*n, 2, x/2)))} \\ Seiichi Manyama, Jan 09 2021
-
from math import isqrt
from sympy.abc import x
from sympy import resultant, chebyshevt, chebyshevu, I
def A127606(n): return isqrt(resultant(chebyshevt((n<<1)+1,I*x/2),chebyshevu(n<<1,x/2)))<Chai Wah Wu, Nov 07 2023
A295214
Array T(m,n) read by antidiagonals: number of m X n rectangular patterns of precisely half black squares and half white squares that are tilable with black and white colored dominoes, for m >= 1, n >= 1.
Original entry on oeis.org
0, 2, 2, 0, 6, 0, 4, 16, 16, 4, 0, 44, 0, 44, 0, 8, 120, 318, 318, 120, 8, 0, 328, 0, 2798, 0, 328, 0, 16, 896, 6334, 22222, 22222, 6334, 896, 16
Offset: 1
Upper left corner of array:
0, 2, 0, 4, 0, ...
2, 6, 16, 44, ...
0, 16, 0, ...
4, 44, ...
0, ...
...
Cf.
A295215 (unambiguously tilable patterns),
A295216 (ambiguously tilable patterns),
A004003 (domino tiling of a square),
A099390 (domino tiling of a rectangle).
A353777
Number of tilings of an n X n square using dominoes, monominoes and 2 X 2 tiles.
Original entry on oeis.org
1, 1, 8, 163, 15623, 5684228, 8459468955, 50280716999785, 1202536689448371122, 115462301811597894998929, 44537596159273736617786474211, 69003082378039459280864860681919942, 429429579883061866326542598342441907826951, 10734684843612889640707750537898705644071715970757
Offset: 0
a(2) = 8:
.___. .___. .___. .___. .___. .___. .___. .___.
| | |_|_| |___| | | | |_|_| |___| |_| | | |_|
|___| |_|_| |___| |_|_| |___| |_|_| |_|_| |_|_| .
A360725
Number of ways to tile an n X n square using oblongs with distinct height x width dimensions.
Original entry on oeis.org
0, 0, 4, 36, 1056, 31052, 1473944, 87469884
Offset: 1
a(1) = 0 as no distinct oblongs can tile a square with dimensions 1 x 1.
a(2) = 0 as no distinct oblongs can tile a square with dimensions 2 x 2.
a(3) = 4. There is one tiling, excluding those equivalent by symmetry:
.
+---+---+---+
| |
+---+---+---+
| |
+ +
| |
+---+---+---+
.
This tiling can occur in 4 different ways, giving 4 ways in total.
a(4) = 36. The possible tilings, excluding those equivalent by symmetry, are:
.
+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ +---+---+---+---+
| | | | | | | | | | |
+ + + +---+---+---+---+ + +---+---+---+ + +---+---+---+
| | | | | | | | | | | |
+---+---+---+---+ + + + + + + + + +
| | | | | | | | | | |
+ + + + +---+---+---+---+ +---+---+ +
| | | | | | | | |
+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ +---+---+---+---+
.
The first tiling can occur in 8 different ways, the second in 4 different ways, the third in 16 different ways and the fourth in 8 different ways. This gives 36 ways in total.
A360773
Number of ways to tile a 2n X 2n square using rectangles with distinct dimensions such that the sum of the rectangles perimeters equals the area of the square.
Original entry on oeis.org
0, 1, 8, 1024, 620448
Offset: 1
a(1) = 0 as a 2 x 2 square, with area 4, cannot be tiled with distinct rectangles with perimeters that sum to 4.
a(2) = 1 as a 4 x 4 rectangle, with area 16, can be tiled with a 4 x 4 square with perimeter 4 + 4 + 4 + 4 = 16.
a(3) = 8. The possible tilings for the 6 x 6 square, with area 36, excluding those equivalent by symmetry, are:
.
+---+---+---+---+---+---+ +---+---+---+---+---+---+
| | | |
+---+---+---+---+---+---+ + +
| | | |
+ + +---+---+---+---+---+---+
| | | |
+ + + +
| | | |
+ + + +
| | | |
+ + + +
| | | |
+---+---+---+---+---+---+ +---+---+---+---+---+---+
.
where for the first tiling (2*6 + 2*1) + (2*6 + 2*5) = 36 while for the second tiling (2*6 + 2*2) + (2*6 + 2*4) = 36. Both of these tilings can occur in 4 ways, giving 8 ways in total.
a(4) = 1024. And example tiling of the 8 x 8 square, with area 64, is:
.
+---+---+---+---+---+---+---+---+
| | | |
+ + +---+---+
| | | |
+ + + +
| | | |
+---+---+---+---+---+---+---+---+
| |
+ +
| |
+ +
| |
+ +
| |
+ +
| |
+---+---+---+---+---+---+---+---+
.
where (2*1 + 2*3) + (2*5 + 2*3) + (2*2 + 2*1) + (2*2 + 2*2) + (2*8 + 2*5) = 64.
A060635
a(n) is the number of 2 X 1 domino tilings of the set S in the plane R^2 consisting of the union of the following two rectangles: rectangle1: |x| <= n, |y| <= 1, rectangle2: |x| <= 1, |y| <= n.
Original entry on oeis.org
2, 8, 72, 450, 3200, 21632, 149058, 1019592, 6993800, 47922050, 328499712, 2251473408, 15432082562, 105772401800, 724976569800, 4969058770242, 34058447431808, 233440040239232, 1600021920672450, 10966713178192200, 75166970919070472, 515202081704384258, 3531247605071972352
Offset: 1
Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 16 2001
a(1) = 2 because in this case the set S is the unit square and there is one horizontal tiling and one vertical.
- Harry J. Smith, Table of n, a(n) for n = 1..200
- M. Ciucu, Enumeration of perfect matchings in graphs with reflective symmetry, J. Combin. Theory Ser. A 77 (1997), no. 1, 67-97.
- W. Jockusch, Perfect matchings and perfect squares J. Combin. Theory Ser. A 67 (1994), no. 1, 100-115.
- Index entries for linear recurrences with constant coefficients, signature (5,15,-15,-5,1).
-
with(combinat): for n from 1 to 40 do printf(`%d,`,2*fibonacci(n)^2*fibonacci(n+1)^2) od:
-
2*Times @@@ Partition[Fibonacci[Range[25]]^2, 2, 1] (* Paolo Xausa, Jul 03 2025 *)
-
{ a=1; b=0; c=1; for (n=1, 200, f=a+b; g=b+c; a=b; b=c; c=g; write("b060635.txt", n, " ", 2*f^2*g^2); ) } \\ Harry J. Smith, Jul 08 2009
A137308
Number of dimer coverings on n X n square if n is even; number of dimer arrangements with exactly one monomer if n is odd.
Original entry on oeis.org
1, 1, 2, 18, 36, 2180, 6728, 2200776, 12988816, 20355006224, 258584046368, 1801272981919008, 53060477521960000, 1560858753560238398528, 112202208776036178000000, 13428038397958481723104394368
Offset: 0
- Y. Kong, Packing dimers on (2p+1) X (2q+1) lattices, Phys. Rev. E 73 (2006) 016106
A189002
Number of domino tilings of the n X n grid with upper left corner removed iff n is odd.
Original entry on oeis.org
1, 1, 2, 4, 36, 192, 6728, 100352, 12988816, 557568000, 258584046368, 32565539635200, 53060477521960000, 19872369301840986112, 112202208776036178000000, 126231322912498539682594816, 2444888770250892795802079170816, 8326627661691818545121844900397056
Offset: 0
a(3) = 4 because there are 4 domino tilings of the 3 X 3 grid with upper left corner removed:
. .___. . .___. . .___. . .___.
._|___| ._|___| ._| | | ._|___|
| |___| | | | | | |_|_| |___| |
|_|___| |_|_|_| |_|___| |___|_|
-
A[1, 1] = 1;
A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2]; M[i_, j_] /; j < i := -M[j, i]; M[, ] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i - 1)*m + j - s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t + 1] = 1]; If[i < n, M[t, t + m] = 1 - 2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m - s, n*m - s}]] ]]];
a[n_] := A[n, n];
a /@ Range[0, 17] (* Jean-François Alcover, Feb 27 2020, after Alois P. Heinz in A189006 *)
Comments