cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 54 results. Next

A054344 Number of ways of covering a 2n X 2n lattice with 2n^2 dominoes of which exactly 6 are horizontal (or vertical) dominoes.

Original entry on oeis.org

9, 1064, 21656, 197484, 1143366, 4927524, 17240292, 51631617, 137044523, 330284988, 735542444, 1533609350, 3024043008, 5684167992, 10249533240, 17821214019, 30006185613, 49097892704, 78305096016
Offset: 2

Views

Author

Yong Kong (ykong(AT)curagen.com), May 06 2000

Keywords

Examples

			a(3) = 1064 because we have 1064 ways to cover a 36 X 36 lattice with exactly 6 horizontal (or vertical) dominoes and exactly 12 vertical (or horizontal) dominoes.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^9-10*x^8+45*x^7-36*x^6+3096*x^5 +17256*x^4 +27724*x^3+11421*x^2+974*x+9)/(x-1)^10,{x,0,30}],x] (* Vincenzo Librandi, Jun 26 2012 *)

Formula

a(n) = (1/720)*n*(n+1)*(120*n^7-300*n^6-70*n^5+363*n^4+416*n^3-231*n^2-394*n-264).
G.f.: x^2*(x^9-10*x^8+45*x^7-36*x^6+3096*x^5+17256*x^4+27724*x^3+11421*x^2+974*x+9)/(x-1)^10. - Colin Barker, Jun 26 2012

A124997 Number of fault-free domino tilings (or dimer coverings) of a 2n X 2n square.

Original entry on oeis.org

0, 0, 0, 25506, 1759280998, 854818404562894, 3588226034666378581610, 138311081613064367684548901556, 50272239752141442901464758051467073726, 174927321882862834702052846250836696969014873138, 5889117928937174007411459040006660524033737246962655301188
Offset: 1

Views

Author

Don Knuth, Jun 26 2008

Keywords

Comments

Enumerates a subclass of the things counted by A004003.
"Fault-free" means that every straight line through the interior of the square hits the interior of some domino.

Crossrefs

Cf. A004003.

Extensions

a(7) from Alois P. Heinz, Oct 19 2015
a(8)-a(11) from Xu Mingkuan, Dec 23 2016

A127606 a(n) = 2^(2*n*n) * Product_{1<=i,j<=n} (cos(i*Pi/(2*n+1))^2 + sin(j*Pi/(2*n+1))^2).

Original entry on oeis.org

1, 4, 176, 79808, 372713728, 17931360207872, 8887976555024756736, 45390122553039546330628096, 2388340820825093234015277927170048, 1294826675280341699389150405743029631844352
Offset: 0

Views

Author

Miklos Kristof, Apr 03 2007

Keywords

Comments

a(n)/4^n is an integer. - Seiichi Manyama, Dec 31 2020

Crossrefs

Programs

  • Maple
    for n from 0 to 12 do a[n]:=2^(2*n*n)*product(product(cos(i*Pi/(2*n+1))^2+ sin(j*Pi/(2*n+1))^2,j=1..n),i=1..n) od: seq(round(evalf(a[n],300)),n=0..12);
  • Mathematica
    Table[2^(2*n^2) * Product[Product[Cos[i*Pi/(2*n + 1)]^2 + Sin[j*Pi/(2*n + 1)]^2, {i, 1, n}], {j, 1, n}], {n, 0, 15}] // Round (* Vaclav Kotesovec, Mar 18 2023 *)
  • PARI
    default(realprecision, 120);
    {a(n) = round(prod(i=1, n, prod(j=1, n, 4*cos(i*Pi/(2*n+1))^2+4*sin(j*Pi/(2*n+1))^2)))} \\ Seiichi Manyama, Dec 31 2020
    
  • PARI
    {a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n+1, 1, I*x/2), polchebyshev(2*n, 2, x/2)))} \\ Seiichi Manyama, Jan 09 2021
    
  • Python
    from math import isqrt
    from sympy.abc import x
    from sympy import resultant, chebyshevt, chebyshevu, I
    def A127606(n): return isqrt(resultant(chebyshevt((n<<1)+1,I*x/2),chebyshevu(n<<1,x/2)))<Chai Wah Wu, Nov 07 2023

Formula

a(n) = 2^n * sqrt(Resultant(T_{2*n+1}(i*x/2), U_{2*n}(x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - Seiichi Manyama, Jan 09 2021
a(n) ~ 2^(1/8) * exp(G*(2*n + 1)^2/Pi) / (1 + sqrt(2))^(n + 1/2), where G is Catalan's constant A006752. - Vaclav Kotesovec, Mar 18 2023

A295214 Array T(m,n) read by antidiagonals: number of m X n rectangular patterns of precisely half black squares and half white squares that are tilable with black and white colored dominoes, for m >= 1, n >= 1.

Original entry on oeis.org

0, 2, 2, 0, 6, 0, 4, 16, 16, 4, 0, 44, 0, 44, 0, 8, 120, 318, 318, 120, 8, 0, 328, 0, 2798, 0, 328, 0, 16, 896, 6334, 22222, 22222, 6334, 896, 16
Offset: 1

Views

Author

John Mason, Nov 17 2017

Keywords

Comments

See links.

Examples

			Upper left corner of array:
0,  2,  0,  4,  0, ...
2,  6, 16, 44, ...
0, 16,  0, ...
4, 44, ...
0, ...
...
		

Crossrefs

Cf. A295215 (unambiguously tilable patterns), A295216 (ambiguously tilable patterns), A004003 (domino tiling of a square), A099390 (domino tiling of a rectangle).

Formula

a(n) = A295215(n) + A295216(n).

A353777 Number of tilings of an n X n square using dominoes, monominoes and 2 X 2 tiles.

Original entry on oeis.org

1, 1, 8, 163, 15623, 5684228, 8459468955, 50280716999785, 1202536689448371122, 115462301811597894998929, 44537596159273736617786474211, 69003082378039459280864860681919942, 429429579883061866326542598342441907826951, 10734684843612889640707750537898705644071715970757
Offset: 0

Views

Author

Alois P. Heinz, May 07 2022

Keywords

Examples

			a(2) = 8:
  .___.  .___.  .___.  .___.  .___.  .___.  .___.  .___.
  |   |  |_|_|  |___|  | | |  |_|_|  |___|  |_| |  | |_|
  |___|  |_|_|  |___|  |_|_|  |___|  |_|_|  |_|_|  |_|_| .
		

Crossrefs

Formula

a(n) = A352589(n,n).

A360725 Number of ways to tile an n X n square using oblongs with distinct height x width dimensions.

Original entry on oeis.org

0, 0, 4, 36, 1056, 31052, 1473944, 87469884
Offset: 1

Views

Author

Scott R. Shannon, Feb 18 2023

Keywords

Comments

All possible tilings are counted, including those identical by symmetry. Note that distinct height x width dimensions means that, for example, a 1 x 3 oblong can be used twice, once in a horizonal (1 x 3) and once in a vertical (3 x 1) direction.

Examples

			a(1) = 0 as no distinct oblongs can tile a square with dimensions 1 x 1.
a(2) = 0 as no distinct oblongs can tile a square with dimensions 2 x 2.
a(3) = 4. There is one tiling, excluding those equivalent by symmetry:
.
  +---+---+---+
  |           |
  +---+---+---+
  |           |
  +           +
  |           |
  +---+---+---+
.
This tiling can occur in 4 different ways, giving 4 ways in total.
a(4) = 36. The possible tilings, excluding those equivalent by symmetry, are:
.
  +---+---+---+---+   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
  |   |           |   |               |   |   |           |   |   |           |
  +   +           +   +---+---+---+---+   +   +---+---+---+   +   +---+---+---+
  |   |           |   |               |   |   |           |   |   |   |       |
  +---+---+---+---+   +               +   +   +           +   +   +   +       +
  |               |   |               |   |   |           |   |   |   |       |
  +               +   +               +   +---+---+---+---+   +---+---+       +
  |               |   |               |   |               |   |       |       |
  +---+---+---+---+   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
.
The first tiling can occur in 8 different ways, the second in 4 different ways, the third in 16 different ways and the fourth in 8 different ways. This gives 36 ways in total.
		

Crossrefs

A360773 Number of ways to tile a 2n X 2n square using rectangles with distinct dimensions such that the sum of the rectangles perimeters equals the area of the square.

Original entry on oeis.org

0, 1, 8, 1024, 620448
Offset: 1

Views

Author

Keywords

Comments

All possible tilings are counted, including those identical by symmetry. Note that distinct dimensions means that, for example, a 1 x 3 rectangle can only be used once, regardless of if it lies horizontally or vertically.
Only squares with even edges lengths are possible since the area of a square with odd edge lengths is odd, while the perimeter of any rectangle is even.

Examples

			a(1) = 0 as a 2 x 2 square, with area 4, cannot be tiled with distinct rectangles with perimeters that sum to 4.
a(2) = 1 as a 4 x 4 rectangle, with area 16, can be tiled with a 4 x 4 square with perimeter 4 + 4 + 4 + 4 = 16.
a(3) = 8. The possible tilings for the 6 x 6 square, with area 36, excluding those equivalent by symmetry, are:
.
  +---+---+---+---+---+---+   +---+---+---+---+---+---+
  |                       |   |                       |
  +---+---+---+---+---+---+   +                       +
  |                       |   |                       |
  +                       +   +---+---+---+---+---+---+
  |                       |   |                       |
  +                       +   +                       +
  |                       |   |                       |
  +                       +   +                       +
  |                       |   |                       |
  +                       +   +                       +
  |                       |   |                       |
  +---+---+---+---+---+---+   +---+---+---+---+---+---+
.
where for the first tiling (2*6 + 2*1) + (2*6 + 2*5) = 36 while for the second tiling (2*6 + 2*2) + (2*6 + 2*4) = 36. Both of these tilings can occur in 4 ways, giving 8 ways in total.
a(4) = 1024. And example tiling of the 8 x 8 square, with area 64, is:
.
  +---+---+---+---+---+---+---+---+
  |   |                   |       |
  +   +                   +---+---+
  |   |                   |       |
  +   +                   +       +
  |   |                   |       |
  +---+---+---+---+---+---+---+---+
  |                               |
  +                               +
  |                               |
  +                               +
  |                               |
  +                               +
  |                               |
  +                               +
  |                               |
  +---+---+---+---+---+---+---+---+
.
where (2*1 + 2*3) + (2*5 + 2*3) + (2*2 + 2*1) + (2*2 + 2*2) + (2*8 + 2*5) = 64.
		

Crossrefs

A060635 a(n) is the number of 2 X 1 domino tilings of the set S in the plane R^2 consisting of the union of the following two rectangles: rectangle1: |x| <= n, |y| <= 1, rectangle2: |x| <= 1, |y| <= n.

Original entry on oeis.org

2, 8, 72, 450, 3200, 21632, 149058, 1019592, 6993800, 47922050, 328499712, 2251473408, 15432082562, 105772401800, 724976569800, 4969058770242, 34058447431808, 233440040239232, 1600021920672450, 10966713178192200, 75166970919070472, 515202081704384258, 3531247605071972352
Offset: 1

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 16 2001

Keywords

Comments

The relevant graph has rotational symmetry so the number of tilings is a square or twice a square, in this case by the formula for a(n) it is always twice a square.

Examples

			a(1) = 2 because in this case the set S is the unit square and there is one horizontal tiling and one vertical.
		

Crossrefs

Programs

  • Maple
    with(combinat): for n from 1 to 40 do printf(`%d,`,2*fibonacci(n)^2*fibonacci(n+1)^2) od:
  • Mathematica
    2*Times @@@ Partition[Fibonacci[Range[25]]^2, 2, 1] (* Paolo Xausa, Jul 03 2025 *)
  • PARI
    { a=1; b=0; c=1; for (n=1, 200, f=a+b; g=b+c; a=b; b=c; c=g; write("b060635.txt", n, " ", 2*f^2*g^2); ) } \\ Harry J. Smith, Jul 08 2009

Formula

a(n) = 2 * F(n)^2 * F(n+1)^2 where F(n) is the n-th Fibonacci number - sequence A000045.
G.f.: -2*x*(1-x+x^2) / ( (x-1)*(x^2+3*x+1)*(x^2-7*x+1) ). - R. J. Mathar, Jan 30 2011
a(n) = -4*(-1)^n*A002878(n)/25 - 2/25 + 6*A049658(n)/25. - R. J. Mathar, Jan 30 2011
a(n) = 2 * A001654(n)^2 = 2 * A197424(n-2) for n>=2. - Alois P. Heinz, Jul 03 2025

Extensions

More terms from James Sellers, Apr 16 2001

A137308 Number of dimer coverings on n X n square if n is even; number of dimer arrangements with exactly one monomer if n is odd.

Original entry on oeis.org

1, 1, 2, 18, 36, 2180, 6728, 2200776, 12988816, 20355006224, 258584046368, 1801272981919008, 53060477521960000, 1560858753560238398528, 112202208776036178000000, 13428038397958481723104394368
Offset: 0

Views

Author

Steven Finch, Apr 03 2008

Keywords

Comments

Subsequence of even-subscripted terms is A004003.
Rightmost diagonal of A242861.
Also the number of maximum matchings in the n X n grid graph. - Eric W. Weisstein, May 28 2017

References

  • Y. Kong, Packing dimers on (2p+1) X (2q+1) lattices, Phys. Rev. E 73 (2006) 016106

Crossrefs

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 15 2021

A189002 Number of domino tilings of the n X n grid with upper left corner removed iff n is odd.

Original entry on oeis.org

1, 1, 2, 4, 36, 192, 6728, 100352, 12988816, 557568000, 258584046368, 32565539635200, 53060477521960000, 19872369301840986112, 112202208776036178000000, 126231322912498539682594816, 2444888770250892795802079170816, 8326627661691818545121844900397056
Offset: 0

Views

Author

Alois P. Heinz, Apr 15 2011

Keywords

Examples

			a(3) = 4 because there are 4 domino tilings of the 3 X 3 grid with upper left corner removed:
  . .___.  . .___.  . .___.  . .___.
  ._|___|  ._|___|  ._| | |  ._|___|
  | |___|  | | | |  | |_|_|  |___| |
  |_|___|  |_|_|_|  |_|___|  |___|_|
		

Crossrefs

Main diagonal of A189006.
Bisection gives: A004003 (even part), A007341 (odd part).

Programs

  • Mathematica
    A[1, 1] = 1;
    A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2]; M[i_, j_] /; j < i := -M[j, i]; M[, ] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i - 1)*m + j - s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t + 1] = 1]; If[i < n, M[t, t + m] = 1 - 2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m - s, n*m - s}]] ]]];
    a[n_] := A[n, n];
    a /@ Range[0, 17] (* Jean-François Alcover, Feb 27 2020, after Alois P. Heinz in A189006 *)

Formula

a(n) = A189006(n,n).
Previous Showing 31-40 of 54 results. Next