cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 154 results. Next

A183174 Numbers k such that (10^(2k+1) - 6*10^k - 1)/3 is prime.

Original entry on oeis.org

1, 3, 7, 61, 90, 92, 269, 298, 321, 371, 776, 1567, 2384, 2566, 3088, 5866, 8051, 9498, 12635, 24512, 32521, 43982
Offset: 1

Views

Author

Ray Chandler, Dec 28 2010

Keywords

Comments

a(23) > 10^5. - Robert Price, Jan 29 2016

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(10^(2n + 1) - 6*10^n - 1)/3], Print[n]], {n, 3000}]
  • PARI
    for(n=1,1e3,if(ispseudoprime((10^(2*n+1)-6*10^n-1)/3),print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = (A077775(n) - 1)/2.

Extensions

a(21)-a(22) from Robert Price, Jan 29 2016

A204940 Numbers n such that (23^n - 1)/22 is prime.

Original entry on oeis.org

5, 3181, 61441, 91943, 121949, 221411
Offset: 1

Views

Author

Robert Price, Jan 20 2012

Keywords

Comments

No other terms < 100000.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100]], PrimeQ[(23^#-1)/22]&]
  • PARI
    is(n)=ispseudoprime((23^n-1)/22) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(5)=121949 corresponds to a probable prime discovered by Paul Bourdelais, Oct 19 2017
a(6)=221411 corresponds to a probable prime discovered by Paul Bourdelais, Aug 04 2020

A036229 Smallest n-digit prime containing only digits 1 or 2 or -1 if no such prime exists.

Original entry on oeis.org

2, 11, 211, 2111, 12211, 111121, 1111211, 11221211, 111112121, 1111111121, 11111121121, 111111211111, 1111111121221, 11111111112221, 111111112111121, 1111111112122111, 11111111111112121, 111111111111112111, 1111111111111111111, 11111111111111212121
Offset: 1

Views

Author

Keywords

Comments

It is conjectured that such a prime always exists.
a(2), a(19), a(23), etc. are the prime repunits (A004023). a(1000) = (10^n-1)/9 + 111011000010.

Crossrefs

Programs

  • Mathematica
    Do[p = (10^n - 1)/9; k = 0; While[ ! PrimeQ[p], k++; p = FromDigits[ PadLeft[ IntegerDigits[ k, 2], n] + 1]]; Print[p], {n, 1, 20}]
    Table[Min[Select[ FromDigits/@Tuples[{1,2},n],PrimeQ]],{n,20}] (* Harvey P. Dale, Feb 05 2014 *)
  • Python
    from sympy import isprime
    def A036229(n):
        k, r, m = (10**n-1)//9, 2**n-1, 0
        while m <= r:
            t = k+int(bin(m)[2:])
            if isprime(t):
                return t
            m += 1
        return -1 # Chai Wah Wu, Aug 18 2021

Extensions

Edited by N. J. A. Sloane and Robert G. Wilson v, May 03 2002
Escape clause added by Chai Wah Wu, Aug 18 2021

A138940 Indices n such that A019328(n) = Phi(n,10) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

2, 4, 10, 12, 14, 19, 23, 24, 36, 38, 39, 48, 62, 93, 106, 120, 134, 150, 196, 317, 320, 385, 586, 597, 654, 738, 945, 1031, 1172, 1282, 1404, 1426, 1452, 1521, 1752, 1812, 1836, 1844, 1862, 2134, 2232, 2264, 2667, 3750, 3903, 3927, 4274, 4354, 5877, 6022
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Comments

Unique period primes (A040017) are often of the form Phi(k,10) or Phi(k,-10).
Terms of this sequence which are the square of a prime, a(n)=p^2, are such that A252491(p) is prime. Apart from a(2)=2^2, there is no such term up to 26570. - M. F. Hasler, Jan 09 2015

Crossrefs

Cf. Subsequence of A007498, contains A004023.

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, 10]] &] (* T. D. Noe, Mar 03 2012 *)
  • PARI
    for( i=1,999, isprime( polcyclo(i,10)) && print1( i","))

Extensions

a(28)-a(43) from Robert Price, Mar 03 2012
a(44)-a(50) from Robert Price, Apr 14 2012
a(51)-a(91) from Ray Chandler, Maksym Voznyy et al. (cf. Phi_n(10) link), ca. 2009
a(92)-a(93) from Serge Batalov, Mar 28 2015

A034388 Smallest prime containing at least n consecutive identical digits.

Original entry on oeis.org

2, 11, 1117, 11113, 111119, 2999999, 11111117, 111111113, 1777777777, 11111111113, 311111111111, 2111111111111, 17777777777777, 222222222222227, 1333333333333333, 11111111111111119, 222222222222222221, 1111111111111111111, 1111111111111111111
Offset: 1

Views

Author

Keywords

Comments

For n in A004023, a(n) = A002275(n). For all other n > 1, a(n) has at least n+1 digits and is (for small n) often of the form a*10^n + b*(10^n-1)/9 or a*(10^n-1)/9*10 + b, with 1 <= a <= 9 and b in {1, 3, 7, 9}. However, for n = 24, 46, 48, 58, 60, 64, 66, ..., more digits are required. Only then a(n) can have a digit 0, and if it has, '0' is often the repeated digit. The first indices where a(n) has more than n+2 digits are n = 208, 277, 346, ... - M. F. Hasler, Feb 25 2016; corrected by Robert Israel, Feb 26 2016

Examples

			a(1) = 2 because this is the smallest prime.
a(2) = 11 because this repunit with n=2 digits is prime.
a(3) = 1117 is the smallest prime with 3 repeated digits.
a(19) = (10^19-1)/9 = R(19) is again a repunit prime. Since all primes with 18 consecutive repeated digits have at least 19 digits, also a(18) = a(19). The same happens for a(22) = a(23).
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local d, k,x,y,z,xs,ys,zs,c,cands;
      for d from n do
        cands:= NULL;
        for k from 0 to d-n do
          if k = 0 then zs:= [0] else zs:= [seq(i,i=1..10^k-1,2)] fi;
          if d=n+k then xs:= [0]; ys:= [$1..9] else xs:= [$10^(d-k-n-1)..10^(d-k-n)-1]; ys:= [$0..9] fi;
          cands:= cands, seq(seq(seq(z + 10^k*y*(10^n-1)/9 + x*10^(k+n), x = xs),y=ys),z=zs);
        od;
        cands:= sort([cands]);
        for c in cands do if isprime(c) then return(c) fi od;
      od
    end proc:
    map(f, [$1..30]); # Robert Israel, Feb 26 2016
  • Mathematica
    With[{s = Length /@ Split@ IntegerDigits@ # & /@ Prime@ Range[10^6]}, Prime@ Array[FirstPosition[s, #][[1]] &, Max@ Flatten@ s]] (* Michael De Vlieger, Aug 15 2018 *)
  • PARI
    A034388(n)={for(d=0,9, my(L=[],k=0); for(a=0,10^d-1,a<10^k||k++; L=setunion(L,vector(10-!a,c,[a*10^n+10^n\9*(c-(a>0)),1])*10^(d-k)));for(i=1,#L,if(L[i][2]>1, L[i][1]+L[i][2]>L[i][1]=nextprime(L[i][1]),ispseudoprime(L[i][1]))&&return(L[i][1])))} \\ M. F. Hasler, Feb 28 2016

Extensions

Edited by M. F. Hasler, Feb 25 2016
Edited by Robert Israel, Feb 26 2016

A003020 Largest prime factor of the "repunit" number 11...1 (cf. A002275).

Original entry on oeis.org

11, 37, 101, 271, 37, 4649, 137, 333667, 9091, 513239, 9901, 265371653, 909091, 2906161, 5882353, 5363222357, 333667, 1111111111111111111, 27961, 10838689, 513239, 11111111111111111111111, 99990001, 182521213001, 1058313049
Offset: 2

Views

Author

Keywords

Comments

a(n) = R_n iff n is a term of A004023. - Bernard Schott, Jul 07 2022

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • M. Kraitchik, Introduction à la Théorie des Nombres. Gauthier-Villars, Paris, 1952, p. 40.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Factors of the Repunits 11 through R_40, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1986, p. 219.

Crossrefs

Same as A005422 except for initial terms.
Smallest factor: A067063.

Programs

  • Mathematica
    Table[Max[Transpose[FactorInteger[10^i - 1]][[1]]], {i, 2, 25}]
    Table[FactorInteger[FromDigits[PadRight[{},n,1]]][[-1,1]],{n,2,30}] (* Harvey P. Dale, Feb 01 2014 *)
  • PARI
    a(n)=local(p); if(n<2,n==1,p=factor((10^n-1)/9)~[1,]; p[length(p)])

Formula

a(n) = A006530(A002275(n)). - Ray Chandler, Apr 22 2017

Extensions

More terms from Harvey P. Dale, Jan 17 2001

A037055 Smallest prime containing exactly n 1's.

Original entry on oeis.org

2, 13, 11, 1117, 10111, 101111, 1111151, 11110111, 101111111, 1111111121, 11111111113, 101111111111, 1111111118111, 11111111111411, 111111111116111, 1111111111111181, 11111111101111111, 101111111111111111, 1111111111111111171, 1111111111111111111, 111111111111111119111
Offset: 0

Views

Author

Patrick De Geest, Jan 04 1999

Keywords

Comments

For n > 1, A037055 is conjectured to be identical to A084673. - Robert G. Wilson v, Jul 04 2003
a(n) = A002275(n) for n in A004023. For all other n < 900, a(n) has n+1 digits. - Robert Israel, Feb 21 2016

Crossrefs

Programs

  • Maple
    f:= proc(n) local m,d,r,x;
       r:= (10^n-1)/9;
       if isprime(r) then return r fi;
       r:= (10^(n+1)-1)/9;
       for m from n-1 to 1 by -1 do
         x:= r - 10^m;
         if isprime(x) then return x fi;
       od;
       for m from 0 to n do
         for d from 1 to 8 do
            x:= r + d*10^m;
            if isprime(x) then return x fi;
         od
       od;
       error("Needs more than n+1 digits")
    end proc:
    map(f, [$0..100]); # Robert Israel, Feb 21 2016
  • Mathematica
    f[n_, b_] := Block[{k = 10^(n + 1), p = Permutations[ Join[ Table[b, {i, 1, n}], {x}]], c = Complement[Table[j, {j, 0, 9}], {b}], q = {}}, Do[q = Append[q, Replace[p, x -> c[[i]], 2]], {i, 1, 9}]; r = Min[ Select[ FromDigits /@ Flatten[q, 1], PrimeQ[ # ] & ]]; If[r ? Infinity, r, p = Permutations[ Join[ Table[ b, {i, 1, n}], {x, y}]]; q = {}; Do[q = Append[q, Replace[p, {x -> c[[i]], y -> c[[j]]}, 2]], {i, 1, 9}, {j, 1, 9}]; Min[ Select[ FromDigits /@ Flatten[q, 1], PrimeQ[ # ] & ]]]]; Table[ f[n, 1], {n, 1, 18}]
    Join[{2, 13}, Table[Sort[Flatten[Table[Select[FromDigits/@Permutations[Join[{n}, PadRight[{}, i, 1]]], PrimeQ], {n, 0, 9}]]][[1]], {i, 2, 20}]] (* Vincenzo Librandi, May 11 2017 *)
  • PARI
    A037055(n)={my(p,t=10^(n+1)\9); forstep(k=n+1,1,-1, ispseudoprime(p=t-10^k) && return(p)); forvec(v=[[0, n], [1, 8]], ispseudoprime(p=t+10^v[1]*v[2]) && return(p))} \\ M. F. Hasler, Feb 22 2016

Formula

a(n) = the smallest prime in { R-10^n, R-10^(n-1), ..., R-10; R+a*10^b, a=1, ..., 8, b=0, 1, 2, ..., n }, where R = (10^(n+1)-1)/9 is the (n+1)-digit repunit. - M. F. Hasler, Feb 25 2016
a(n) = prime(A037054(n)). - Amiram Eldar, Jul 21 2025

Extensions

More terms from Sascha Kurz, Feb 10 2003
Edited by Robert G. Wilson v, Jul 04 2003
a(0) = 2 inserted by Robert Israel, Feb 21 2016

A070528 Number of divisors of 10^n-1 (999...999 with n digits).

Original entry on oeis.org

3, 6, 8, 12, 12, 64, 12, 48, 20, 48, 12, 256, 24, 48, 128, 192, 12, 640, 6, 384, 256, 288, 6, 2048, 96, 192, 96, 768, 96, 16384, 24, 6144, 128, 192, 384, 5120, 24, 24, 128, 6144, 48, 49152, 48, 4608, 1280, 192, 12, 16384, 48, 3072, 512, 1536, 48, 12288, 768
Offset: 1

Views

Author

Henry Bottomley, May 02 2002

Keywords

Examples

			a(7)=12 since the divisors of 9999999 are 1, 3, 9, 239, 717, 2151, 4649, 13947, 41841, 1111111, 3333333, 9999999.
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0,#]&/@(10^Range[60]-1) (* Harvey P. Dale, Jan 14 2011 *)
    Table[DivisorSigma[0, 10^n - 1], {n, 60}] (* T. D. Noe, Aug 18 2011 *)
  • PARI
    a(n) = numdiv(10^n - 1); \\ Michel Marcus, Sep 08 2015

Formula

a(n) = A000005(A002283(n)).
a(n) = Sum_{d|n} A059892(d).
a(n) = A070529(n)*(A007949(n)+3)/(A007949(n)+1).

Extensions

Terms to a(280) in b-file from Hans Havermann, Aug 19 2011
a(281)-a(322) in b-file from Ray Chandler, Apr 22 2017
a(323)-a(352) in b-file from Max Alekseyev, May 04 2022

A005422 Largest prime factor of 10^n - 1.

Original entry on oeis.org

3, 11, 37, 101, 271, 37, 4649, 137, 333667, 9091, 513239, 9901, 265371653, 909091, 2906161, 5882353, 5363222357, 333667, 1111111111111111111, 27961, 10838689, 513239, 11111111111111111111111, 99990001, 182521213001, 1058313049
Offset: 1

Views

Author

Keywords

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Same as A003020 except for the additional a(1) = 3.
Cf. similar sequences listed in A274906.

Programs

Formula

For n > 1, a(n) = A003020(n). For 1 < n < 10, a(n) = A075024(n). - M. F. Hasler, Jul 30 2015
a(n) = A006530(A002283(n)). - Vincenzo Librandi, Jul 13 2016
a(A004023(n)) = A002275(A004023(n)). - Bernard Schott, May 24 2022

Extensions

Terms to a(100) in b-file from Yousuke Koide added by T. D. Noe, Dec 06 2006
Edited by M. F. Hasler, Jul 30 2015
a(101)-a(322) in b-file from Ray Chandler, Apr 22 2017
a(323)-a(352) in b-file from Max Alekseyev, Apr 26 2022

A067063 Smallest prime factor of repunit(n) = (10^n-1)/9 (A002275).

Original entry on oeis.org

11, 3, 11, 41, 3, 239, 11, 3, 11, 21649, 3, 53, 11, 3, 11, 2071723, 3, 1111111111111111111, 11, 3, 11, 11111111111111111111111, 3, 41, 11, 3, 11, 3191, 3, 2791, 11, 3, 11, 41, 3, 2028119, 11, 3, 11, 83, 3, 173, 11, 3, 11, 35121409, 3, 239
Offset: 2

Views

Author

Amarnath Murthy, Jan 03 2002

Keywords

Comments

a(n) = A003020(n) = R_(n) iff n is a term of A004023. - Bernard Schott, May 22 2022

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers.

Crossrefs

Largest factor: A003020.

Programs

  • Maple
    'min(op(numtheory[factorset]((10^k-1)/9)))'$k=2..50; # M. F. Hasler, Nov 21 2006
  • Mathematica
    a = {}; Do[a = Append[a, FactorInteger[(10^n - 1)/9][[1, 1]]], {n, 2, 111} ]; a
    Table[FactorInteger[FromDigits[PadRight[{},n,1]]][[1,1]],{n,2,50}] (* Harvey P. Dale, Dec 10 2013 *)

Formula

a(3n) = 3, a(6n-4) = a(6n-2) = 11, a(30n-25) = a(30n-5) = 41, ... - M. F. Hasler, Nov 21 2006
a(n) = A020639(A002275(n)). - Ray Chandler, Apr 22 2017

Extensions

More terms from Robert G. Wilson v, Jan 04 2002
Previous Showing 11-20 of 154 results. Next