cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 587 results. Next

A072050 Smallest solution to GCD(x,A004086(x))=7^n.

Original entry on oeis.org

7, 18718, 343, 125204947, 231012215, 11298657013, 211066659013, 117088913464607, 2846847905744815, 108244538579770418, 2080795357577501075, 18312871825384462928, 26268977180287044053417, 1734582041294009627423816
Offset: 1

Views

Author

Labos Elemer, Jun 10 2002

Keywords

Crossrefs

Programs

Formula

a(n) = A069554(7^n).

Extensions

a(8)-a(9) from Max Alekseyev, Jun 17 2011
a(10)-a(14) from Giovanni Resta, Oct 30 2019

A100413 Numbers k such that k is reversal(k)-th even composite number (k is A004086(k)-th even composite number).

Original entry on oeis.org

52, 592, 5992, 59992, 599992, 5999992, 59999992, 599999992, 5999999992, 59999999992, 599999999992, 5999999999992, 59999999999992, 599999999999992, 5999999999999992, 59999999999999992, 599999999999999992
Offset: 1

Views

Author

Farideh Firoozbakht, Dec 08 2004

Keywords

Examples

			592 is in the sequence because 592 is the 295th even composite number.
		

Crossrefs

Programs

Formula

a(n) = 6*10^n - 8.
a(n) = 2*(A086943(n) + 3). - Martin Ettl, Nov 08 2012
From Colin Barker, Oct 14 2014: (Start)
a(n) = 10*a(n-1) + a(n-2) - 10*a(n-3).
G.f.: 4*x*(13+5*x)/((1-x)*(1-10*x)). (End)
E.g.f.: 2 (1 - 4*exp(x) + 3*exp(10*x)). - G. C. Greubel, Apr 13 2023

A323061 Numbers n that are not multiples of 10 and such that 10*n*R(n) is a square, where R(n) = A004086(n) is the decimal digits of n reversed.

Original entry on oeis.org

544968, 547658, 560106, 601065, 856745, 869445, 2495295, 4601685, 5606106, 5861064, 5925942, 6016065, 20861005, 21778875, 22972005, 29389855, 42251835, 50016802, 50027922, 51826326, 53815224, 55898392, 56066106, 56570706, 56873466, 57887712, 60166065, 60707565
Offset: 1

Views

Author

Chai Wah Wu, Jan 07 2019

Keywords

Comments

10*a(n) are exactly the terms in A322835 that are not multiples of 100.
m is a term if and only if R(m) is a term.
The product of the first and last digits of a term is a multiple of 10, i.e., the first and last digits of a term are the digit 5 and an even nonzero digit.
The sequence has an infinite number of terms. For instance, 601x065 is a term where x is a string of k repeated digits 6 and k >= 0, i.e., 601065, 6016065, 60166065, etc. Similarly numbers of the form 560x106 are also terms.
To see this, let a = 601*10^(3+k) + 65 + 6000*(10^k-1)/9. Then R(a) = 56*10^(4+k) + 106 + 6000*(10^k-1)/9. The number 10*a*R(a) can be written as 30360100*(10^(k + 3) - 1)^2/9 whose square root is 5510*(10^(k + 3) - 1)/3.
From Chai Wah Wu, Feb 18 2019: (Start)
22994x77005 is a term where x is a string of k repeated digits 9 and k >= 0. Let a = 22994*10^(5+k) + 77005 + 100000*(10^k-1). Then R(a) = 50077*10^(5+k) + 49922 + 100000*(10^k-1). The number 10*a*R(a) can be written as 11515436100*(10^(k+5) - 1)^2, whose square root is 107310*(10^(k+5) - 1).
23804x76195 is a term where x is a string of k repeated digits 9 and k >= 0. Let a = 23804*10^(5+k) + 76195 + 100000*(10^k-1). Then R(a) = 59167*10^(5+k) + 40832 + 100000*(10^k-1). The number 10*a*R(a) can be written as 14084942400*(10^(k+5) - 1)^2, whose square root is 118680*(10^(k+5) - 1).
If w is a term with decimal representation a, then the number n corresponding to the string axa is also a term, where x is a string of k repeated digits 0 and k >= 0. The number n = w*10^(k+m)+w = w*(10^(k+m)+1) where m is the number of digits of w. Note that n is also not a multiple of 10. Then R(n) = R(w)*10^(k+m)+R(w) = R(w)(10^(k+m)+1). Then 10*n*R(n) = 10*w*R(w)(10^(k+m)+1)^2 which is a square since w is a term.
The same argument shows that numbers corresponding to axaxa, axaxaxa, ..., are also terms.
For example, since 544968 is a term, so are 544968544968, 5449680544968, 54496800544968, 5449680054496800544968, etc.
(End)

Examples

			238026195 * 591620832 * 10 = 1186681320^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[61*10^6],Mod[#,10]!=0&&IntegerQ[Sqrt[10# IntegerReverse[ #]]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 16 2020 *)
  • PARI
    isok(n) = (n % 10) && issquare(10*n*fromdigits(Vecrev(digits(n)))); \\ Michel Marcus, Jan 10 2019

A068636 a(n) = Min(n, R(n)), where R(n) (A004086) = digit reversal of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 12, 22, 23, 24, 25, 26, 27, 28, 29, 3, 13, 23, 33, 34, 35, 36, 37, 38, 39, 4, 14, 24, 34, 44, 45, 46, 47, 48, 49, 5, 15, 25, 35, 45, 55, 56, 57, 58, 59, 6, 16, 26, 36, 46, 56, 66, 67, 68, 69, 7, 17, 27, 37, 47, 57
Offset: 1

Views

Author

Amarnath Murthy, Feb 27 2002

Keywords

Comments

a(n) = A004185(n) for n <= 100. - Reinhard Zumkeller, Apr 03 2015

Examples

			a(12) = min(12,21) = 12. a(34632) = min(34632,23643) = 23643.
		

Crossrefs

Programs

  • Haskell
    a068636 n = min n $ a004086 n  -- Reinhard Zumkeller, Apr 03 2015
    
  • Maple
    a:= n-> min(n,(s-> parse(cat(seq(s[-i], i=1..length(s)))))(""||n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 22 2015
  • Mathematica
    Table[Min[n,IntegerReverse[n]],{n,80}] (* The program uses the IntegerReverse function from Mathematica version 10 *) (* Harvey P. Dale, Nov 27 2015 *)
  • Python
    def A068636(n): return min(n,int(str(n)[::-1])) # Chai Wah Wu, Jun 26 2025

A071241 Arithmetic mean of k and R(k) where k is the n-th nonnegative number using only even digits and R(k) is its digit reversal (A004086).

Original entry on oeis.org

0, 2, 4, 6, 8, 11, 22, 33, 44, 55, 22, 33, 44, 55, 66, 33, 44, 55, 66, 77, 44, 55, 66, 77, 88, 101, 202, 303, 404, 505, 121, 222, 323, 424, 525, 141, 242, 343, 444, 545, 161, 262, 363, 464, 565, 181, 282, 383, 484, 585, 202, 303, 404, 505, 606, 222, 323, 424, 525
Offset: 0

Views

Author

Amarnath Murthy, May 20 2002

Keywords

Comments

Conjecture: 101 is the largest prime term, the only other primes being 2 and 11.
The conjecture is false: for example, 181 and 383 are prime terms. There are 150 prime terms less than 75000. - Harvey P. Dale, Sep 02 2016

Crossrefs

Programs

  • Maple
    reversal := proc(n) local i, len, new, temp: new := 0: temp := n: len := floor(log[10](n+.1))+1: for i from 1 to len do new := new+irem(temp, 10)*10^(len-i): temp := floor(temp/10): od: RETURN(new): end: alleven := proc(n) local i, flag, len, temp: temp := n: flag := 1: if n=0 then flag := 0 fi: len := floor(log[10](n+.1))+1: for i from 1 to len do if irem(temp, 10) mod 2 = 0 then temp := floor(temp/10) else flag := 0 fi: od: RETURN(flag): end: for n from 0 to 500 by 2 do if alleven(n) = 1 then printf(`%d,`,(n+reversal(n))/2) fi: od: # James Sellers, May 28 2002
  • Mathematica
    Mean[{#,IntegerReverse[#]}]&/@(FromDigits/@Tuples[{0,2,4,6,8},3]) (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 02 2016 *)

Formula

{k + R(k)}/2 where k uses only odd digits 0, 2, 4, 6 and 8.
a(n) = (A014263(n) + A004086(A014263(n))) / 2. - Sean A. Irvine, Jul 06 2024

Extensions

More terms from James Sellers, May 28 2002
Corrected by Harvey P. Dale, Sep 02 2016

A081431 RevBinary(RevDecimal(n)), where RevBinary(m) is the binary reversal of m (A030101) and RevDecimal(m) is the decimal reversal of m (A004086).

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 1, 13, 21, 31, 37, 51, 47, 113, 69, 109, 1, 3, 13, 1, 21, 11, 31, 9, 37, 29, 3, 11, 29, 33, 53, 43, 63, 73, 101, 93, 1, 7, 3, 17, 13, 27, 1, 41, 21, 61, 5, 15, 19, 49, 45, 59, 65, 105, 85, 125, 3, 1, 11, 9, 29, 7, 33, 25, 53, 3, 7, 17, 27, 41
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 20 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[IntegerReverse[IntegerReverse[n],2],{n,0,80}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 03 2018 *)
  • PARI
    a(n) = fromdigits(Vecrev(binary(fromdigits(Vecrev(digits(n))))), 2); \\ Michel Marcus, Jan 30 2023
  • Python
    def a(n): return int(bin(int(str(n)[::-1]))[:1:-1], 2)
    print([a(n) for n in range(74)]) # Michael S. Branicky, Jan 30 2023
    

Formula

a(n) = A030101(A004086(n)). - Michel Marcus, Jan 30 2023

A081432 RevDecimal(RevBinary(n)), where RevDecimal(m) is the decimal reversal of m (A004086) and RevBinary(m) is the binary reversal of m (A030101).

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 31, 3, 11, 7, 51, 1, 71, 9, 52, 5, 12, 31, 92, 3, 91, 11, 72, 7, 32, 51, 13, 1, 33, 71, 94, 9, 14, 52, 75, 5, 73, 12, 35, 31, 54, 92, 16, 3, 53, 91, 15, 11, 34, 72, 95, 7, 93, 32, 55, 51, 74, 13, 36, 1, 56, 33, 79, 71, 18, 94, 311, 9, 37, 14
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 20 2003

Keywords

Crossrefs

Programs

  • Mathematica
    IntegerReverse[IntegerReverse[Range[0,80],2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 03 2017 *)
  • PARI
    a(n) = fromdigits(Vecrev(digits(fromdigits(Vecrev(binary(n)), 2)))); \\ Michel Marcus, Jan 30 2023
  • Python
    def a(n): return int(str(int(bin(n)[:1:-1], 2))[::-1])
    print([a(n) for n in range(75)]) # Michael S. Branicky, Jan 30 2023
    

Formula

a(n) = A004086(A030101(n)). - Michel Marcus, Jan 30 2023

A081433 Numbers n such that RevBinary(RevDecimal(n))=RevDecimal(RevBinary(n)), where RevDecimal(n) is the decimal reversal of n (A004086) and RevBinary(n) is the binary reversal of n (A030101).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 33, 51, 66, 99, 165, 313, 516, 535, 561, 585, 615, 626, 717, 759, 858, 929, 957, 1241, 1421, 2112, 2482, 2552, 2842, 3579, 4224, 5485, 5845, 6336, 7447, 8448, 9009, 9753, 11051, 12631, 13621, 15011, 15351, 15375
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 20 2003

Keywords

Comments

A030101(A004086(a(n)))=A004086(A030101(a(n))), A081431(a(n))=A081432(a(n)).

Crossrefs

Programs

  • Python
    def ok(n): return int(bin(int(str(n)[::-1]))[:1:-1], 2) == int(str(int(bin(n)[:1:-1], 2))[::-1])
    print([k for k in range(2**14) if ok(k)]) # Michael S. Branicky, Jan 30 2023

A060568 Number of primes between n and R(n) where R(n) (A004086) is the digit reversal of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 3, 4, 6, 9, 11, 12, 15, 16, 7, 3, 0, 2, 4, 6, 9, 11, 13, 14, 8, 4, 2, 0, 2, 4, 7, 8, 10, 12, 10, 6, 4, 2, 0, 2, 4, 6, 8, 9, 12, 9, 6, 4, 2, 0, 2, 5, 7, 7, 14, 11, 9, 7, 4, 2, 0, 2, 4, 5, 15, 12, 11, 8, 6, 5, 2, 0, 2, 2, 18, 15, 13, 10, 8, 7, 4, 2, 0, 1, 20, 16, 14
Offset: 1

Views

Author

Amarnath Murthy, Apr 27 2001

Keywords

Examples

			a(10) = 4, as there are four primes between 10 and 1.
		

Crossrefs

Programs

  • Python
    from sympy import primerange
    def A060568(n):
        x = (n, int(str(n)[::-1],10))
        return len([i for i in primerange(min(x)+1,max(x))]) # John Tyler Rascoe, Jan 13 2025

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 10 2001

A062936 Numbers n such that n*R(n) is a palindrome, where R(n) (A004086) = digit reversal.

Original entry on oeis.org

1, 2, 3, 11, 12, 21, 22, 101, 102, 111, 112, 121, 122, 201, 202, 211, 212, 221, 1001, 1002, 1011, 1012, 1021, 1022, 1101, 1102, 1111, 1112, 1121, 1201, 1202, 1211, 2001, 2002, 2011, 2012, 2021, 2101, 2102, 2111, 2201, 10001, 10002, 10011, 10012
Offset: 1

Views

Author

Amarnath Murthy, Jul 05 2001

Keywords

Examples

			122*221 = 26962 hence 122 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100000], Reverse[IntegerDigits[ #*FromDigits[Reverse[IntegerDigits[ # ]]]]] == IntegerDigits[ #*FromDigits[Reverse[IntegerDigits[ # ]]]] &] (* Tanya Khovanova, Jun 17 2009 *)
    Select[Range[11000],PalindromeQ[# IntegerReverse[#]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 21 2020 *)
  • PARI
    lista(nn) = for(n=1, nn, my(d=digits(n*eval(concat(Vecrev(Str(n)))), 10)); if(d == Vecrev(d), print1(n, ", "))); \\ Altug Alkan, Mar 26 2016
    
  • Python
    A062936_list = []
    for n in range(1,10**5):
        s = str(n*int(str(n)[::-1]))
        if s == s[::-1]:
            A062936_list.append(n) # Chai Wah Wu, Sep 08 2014

Formula

Includes integers not ending in 0 with sum of squares of digits < 10. - David W. Wilson, Jul 06 2001

Extensions

Corrected and extended by Dean Hickerson and Patrick De Geest, Jul 06 2001
Previous Showing 31-40 of 587 results. Next